
W
O

 2
00

6/
07

66
47

 A
2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 July 2006 (20.07.2006) PCT (10) International Publication Number

WO 2006/076647 A2
(51) International Patent Classification:

G01C 23/00 (2006.01)

(21) International Application Number:
PCT/US2006/001347

(22) International Filing Date: 13 January 2006 (13.01.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/644,105 14 January 2005 (14.01.2005) US

(71) Applicant (for all designated States except US)'. SYS­
TEMS TECHNOLOGY, INC. [US/US]; 13766 S.
Hawthorne Boulevard, Hawthorne, CA 90250 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only)'. BACHELDER,

Edward N. [US/US]; 615 S. Catalina, Redondo Beach,
CA 90277 (US). LEE, Dong-chan [US/US]; 14528 Avis
Avenue, Lawndale, CA 90260 (US). APONSO, Bimal

[US/US]; 32012 Hawksmoor Drive, Rancho Palos Verdes,
CA 90274 (US).

(74) Agent: HOKANSON, Jon E .; Lewis Brisbois Bisgaard &
Smith LLP, 221 N. Ligueroa Street, Suite 1200, Los Ange­
les, CA 90012 (US).

(81) Designated States (unless otherwise indicated, fo r every
kind o f national protection available)'. AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, fo r every
kind o f regional protection available)'. ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

[Continued on next page]

(54) Title: AUTOROTATION FLIGHT CONTROL SYSTEM

I CKspiny
4. Rotor Speed -

2. Height Above
Ground

6. Vertical Speed'
t£3£& /

J3. Turbine.
Speed

5. Forward Speed

5. Pitch Director

(57) Abstract: The present invention provides computer implemented methodology that permits the safe landing and recovery
of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe
operating area of the height- velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization al­
gorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The
algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a non­
linear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and
manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an
autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those
of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.

WO 2006/076647 A2

WO 2006/076647 A2

WO 2006/076647 A2

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA,
GN, GQ, GW, MF, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply fo r and be granted a

patent (Rule 4.17(H))
— o f inventorship (Rule 4.17(iv))

Published:
— without international search report and to be republished

upon receipt o f that report

For two-letter codes and other abbreviations, refer to the "Guid­
ance Notes on Codes and Abbreviations" appearing at the begin­
ning o f each regular issue o f the PCT Gazette.

WO 2006/076647 A2

WO 2006/076647 PCT/US2006/001347

AUTOROTATION FLIGHT CONTROL SYSTEM

The United States Government has a paid-up license in this invention and the right in

limited circumstances to require the patent owner to license others on reasonable terms as

5 provided for by the terms of NASA Contracts NAS2-02008 and NAS2-02096 awarded by the

NASA, Ames Research Center, Moffett Field, California.

FIELD OF THE INVENTION

The present invention relates to a methodology using optimal control for application to

the time critical maneuvering of dynamic systems including vehicles such as rotorcraft. The

10 methodology is implemented in a computer-based system for calculating and displaying optimal

control input commands to a human-operator for autorotation flight control of a rotorcraft and is

adapted for training helicopter pilots in a flight simulator on safe maneuvering in time critical

situations involving total engine power failure (autorotation) and partial power failure. The

methodology can also be used for automated guidance of dynamic systems including vehicles

15 such as rotorcraft in time critical maneuvering situations and in an automated system that will

provide the highest likelihood of a safe landing if the pilot is incapacitated or if the vehicle is

unmanned.

BACKGROUND ART

A series of analytical and experimental work has been done to understand and describe

10 the nature of the dynamics and pilot’s recovery techniques in rotorcraft’s power failure. Johnson

(Ref. 1) analytically described the dynamics of rotorcraft’s autorotation. Lee (Refs. 2, 3), Zhao

(Refs. 4-6), Carlson (Refs. 7-10), and Okuno (Refs 11,12) investigated the application of

constrained optimization to investigate the safe operational envelopes for autorotation and

reduced-power situations for a variety of rotorcraft ranging from single-engine (OH-5 8 A, Refs.

2-3) to multi-engine, for instance UH-60A and Bell M430, (Refs. 4-6, 8,11, 12, 10) to tilt -rotor

1

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

(Refs. 7, 9, 10). Johnson (Ref. 1) investigated the autorotation of a helicopter from a hover, and

Lee (Refs. 2, 3) refined the problem formulation by adding inequality constraints for thrust and

vertical velocity. Lee postulated that the “avoid” regions in the height-velocity (H-V) restriction

curve could be substantially reduced if optimal pilot inputs were used during autorotation.

References 2 and 3 used a point-mass model of an OH-5 8 A helicopter and the cost function was

a weighted sum of the squared horizontal and vertical components of the helicopter velocity at

touchdown. The point-mass model had two degrees-of-freedom (vertical and horizontal velocity)

with an additional rotor speed degree-of-freedom. The inputs (horizontal and vertical thrust)

required to minimize the cost function were computed using nonlinear optimal control theory.

The correlation between flight data and the optimal results established the adequacy of the use of

a point mass model in the optimal helicopter landing study (Ref. 2, 3). References 2 and 3 also

validated the method by comparing the optimal profiles (helicopter states and controls) with

available autorotation flight-test data for the OH-58A. A unique feature of the Refs. 2 and 3

formulation was the addition of path inequality constraints on components of both the control

and the state vectors. The control variable inequality constraint is a reflection of the limited

amount of thrust that is available to the pilot in the autorotation maneuver without stalling the

rotor. The state variable inequality constraint is an upper bound on either the vertical sink rate of

the helicopter or the rotor angular speed during descent. “Slack” variables were employed to

convert these path inequality constraints into path equality constraints. The resultant two-point

boundary-value problem with path equality constraints was successfully solved using the

Sequential Gradient Restoration Algorithm (SGRA). With bounds on the control and state

vectors, the optimal solutions obtained will realistically reflect the limitations of the helicopter

and its pilot. The model in Ref. 2 and 3 used assumed zero-wind, vertical plane motion, and

zero-slip flight. Zhao (Ref 4-6) extended the work by Lee (Ref. 2, 3) to investigate the takeoff

and landing trajectories of a dual-engine helicopter in the event of a single engine failure. Zhao

also used the SGRA for computing the optimal trajectories and used different constructions for

the objective (cost) function to investigate optimal profiles for continued and rejected landings

2

5

10

15

20

25

30

WO 2006/076647 PCT/US2006/001347

and takeoffs in the event of a single engine failure. In addition to touchdown velocity, horizontal

distance was also included in the objective function to examine the implications of an engine

failure on the safe return and landing or continued flight of the helicopter. A point-mass model of

a UH-60A helicopter was used in this work with improvements to the model to include engine

torque and a ground-effect model. Carlson (Ref. 7-10) launched from the previous body of work

and used optimal control theory to investigate the unsafe (avoid) regions of the H-V envelope in

the event of single-engine failure as well as complete engine failure situations in a civil tiltrotor

aircraft and a dual engine helicopter. A relatively sophisticated three degree-of-freedom (vertical

and horizontal velocity and pitch attitude) rotorcraft model was used with an added rotor speed

degree-of-freedom and a non-linear aerodynamic model of the XV-15 tilt-rotor aircraft and the

Bell M430 helicopter. An important contribution of the Refs. 7-10 work was the improvement in

the optimization method. The Ref. 7-10 work demonstrated that the SGRA optimization method

was not robust in the face of more complex problem formulations. The Refs. 7-10 work

successfully implemented a direct method of optimization (Ref. 13) where the continuous two-

point boundary value problem is discretized into a parameter optimization problem. The

optimization used a well-established and mature nonlinear programming algorithm that is

commercially available (Refs. 14, 15). The present invention applies a similar strategy to

compute the optimal control inputs and resulting flight path for rotorcraft autorotation.

List of References
(1) Wayne Johnson, “Helicopter Optimal Descent and Landing after Power Loss,” NASA
Technical Memorandum, NASA TM 73244, May 1977.
(2) Allan Y. Lee, “Optimal Landing of a Helicopter in Autorotation,” Ph.D. Dissertation,
Stanford University, July 1985.
(3) Allan Y. Lee, Arthur E. Bryson, Jr., and William S. Hindson, “Optimal Landing of a
Helicopter in Autorotation,” Journal of Guidance, Vol. 11, No. 1, pp 7-12, Jan.-Feb. 1988.
(4) Y. Zhao and R. T. N. Chen, “Critical Consideration for Helicopters During Runway
Takeoffs,” Journal of Aircraft, Vol. 32, No. 4, pp 773-781, Jul.-Aug. 1995.
(5) Y. Zhao, Ali A. Jhemi, and R. T. N. Chen, “Optimal Vertical Takeoff and Landing Helicopter
Operation in One Engine Failure,” Journal of Aircraft, Vol. 33, No. 2, pp 337-346, Mar.-Apr.
1996.

3

5

10

15

20

25

30

35

WO 2006/076647 PCT/US2006/001347

(6) R. T. N. Chen and Y. Zhao, “Optimal Trajectories for the Helicopter in One-Engine-
Inoperative Terminal-Area Operations,” Presented at the FVP Symposium on “Advances in
Rotorcraft Technology”, Ottawa, Canada, May 1996.

(7) Eric B. Carlson, “Optimal Tiltrotor Aircraft Operations During Power Failure,” Ph.D.
Dissertation, University of Minnesota, July 1999.

(8) Eric B. Carlson, “An Analytical Methodology for Category A Performance Prediction and
Extrapolation,” Presented at the American Helicopter Society 57th Annual Forum, Washington
DC, May 9-11, 2001.

(9) Eric B. Carson and Y. Zhao, “Prediction of Tiltrotor Height-Velocity Diagrams Using
Optimal Control Theory,” Journal of Aircraft, Vol. 40, No. 5, pp 896-905, Sep.-Oct. 2003.
(10) Ali A. Jhemi, Eric B. Carlson, Y. Zhao, and R. T. N. Chen, “Optimization of Rotorcraft
Flight Following Engine Failure,” Journal of American Helicopter Society, Vol. 49, No. 2, pp
117-126, Apr. 2004.

(11) Y. Okuno and Keiji Kawachi, “Optimal Takeoff of a Helicopter for Category A V/STOL
Operation,” Journal of Aircraft, Vol. 30, No. 2, pp 235-240, Mar.-Apr. 1993.
(12) Y. Okuno, Keiji Kawachi, Akira Azuma, and Shigeru Saito, “Analytical Prediction of
Height-Velocity Diagram of a Helicopter Using Optimal Control Theory,” Journal of Guidance,
Vol. 14, No. 2, pp 453-459, Mar.-Apr. 1991.
(13) C. R. Hargraves and S. W. Paris, “Direct Trajectory Optimization Using Nonlinear
Programming and Collocation,” Journal of Guidance, Vol. 10, No. 4, pp 338-342, Jul.-Aug.
1987.

(14) Philip E. GILL, Walter MURRAY, Michael A. SAUNDERS, and Margaret H. Wright,
‘ USER'S GUIDE FOR NPSOL 5.0,” Technical Report SOL 86-1, Stanford University, Revised
July 30, 1998.

(15) Philip E. GILL, Walter MURRAY, and Michael A. SAUNDERS, “USER'S GUIDE FOR
SNOP Version 6.0,” Stanford University, December 2002.
(16) Watts, Joseph C., Gregory W. Condon, and John V. Pincavage, “Height-Velocity Test, OH-
58A Helicopter,” USAASTA Project No. 69-16, June 1971.

(17) Dooley, L. W. and Yeary, R. D., “Flight Test Evaluation of the High Inertia Rotor System,”
USARTL-TR-79-9, June 1979.

(18) E. N. Bachelder and Bimal L. Aponso “Using Optimal Control for Rotorcraft Autorotation
Training,” Proceedings of the American Helicopter Society 59th Annual Forum, Phoenix,
Arizona, May 6-8 ,2003.

SUMMARY DISCLOSURE OF THE INVENTION

The autorotation capability of helicopters following engine power failure is a unique

feature that can provide a means for executing a safe landing. However, the autorotation

4

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347
maneuver cari req lrir^^ i^ab ll^ lS iffan d proficiency that is not normally acquired through

nominal flight training.

In most autorotation training, pilots receive in-flight instruction on autorotation technique

using initial conditions that are well outside of the hover-velocity (H-V) restriction curve of the

helicopter flown - and the engine remains powered. Additionally, the entry conditions (altitude,

relative wind direction, and especially airspeed) are usually consistent from one practice

autorotation to another (within model and instructor). Autorotation training in a simulator is an

infrequent event for most pilots, and even the best simulators poorly reproduce the cues required

during an actual autorotation. The primary utility of simulators as an autorotation training aid,

therefore, is to develop a proficient instrument scan procedure. The likelihood of a successful

autorotation performed under actual instrument conditions, however, is extremely remote.

Clearly rotary pilots have few resources to help them train toward and maintain autorotation

proficiency, so that the autorotation is usually regarded as a ‘take what comes and pray’

maneuver.

In one aspect the present invention comprises the application of a real-time trajectory

optimization method for guiding a manned rotorcraft, an autonomous unmanned rotorcraft, or a

remote operator of an unmanned rotorcraft, through an autorotation in the event of partial or total

loss of power. The invention provides for safe landing of such a rotorcraft. Further, successful

autorotations may be performed from well within the manufacturer’s designated unsafe operating

area of the height-velocity profile of a rotorcraft or helicopter by employing the fast and robust

optimal algorithm of the present invention. The invention applies nonlinear constrained optimal

control theory to solve for a vehicle’s trajectory and the required control inputs to accomplish a

successful autorotation. The guidance algorithm of the present invention generates optimal

trajectories and control commands via the direct-collocation optimization method, solved using a

commercially available nonlinear programming problem solver. The control inputs computed by

optimal control formulation are collective pitch and aircraft pitch, which are easily manipulated

by an onboard or remote pilot or converted to collective and longitudinal cyclic commands in the

5

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

case pf The formulation of the optimal control problem has

been carefully tailored to enable the solutions to resemble those of an expert pilot, accounting for

the performance limitations of the rotorcraft as well as safety concerns. A preview of the

commanded flight control input suite, which is dynamically updated as the vehicle state changes

in time, is provided to the pilot of a manned or remotely operated unmanned rotorcraft through

an intuitive visual display. In the case of an autonomous unmanned rotorcraft the present

invention provides commands for control motion directly through a link to a conventional

commercially available autopilot.

In another aspect the present invention comprises a novel training methodology and a

system that takes advantage of automation’s potential as a high-speed decision aid and the

strengths of human pattern recognition and conditioning. In this embodiment the invention is

coupled with a flight simulator to train pilots across a range of rotorcraft platforms. Using the

invention’s command preview display and other display functions incorporated with a flight

simulator a pilot trainee should be able to execute numerous maneuvers previously considered

outside the operational envelope, in addition to performing ‘standard’ emergencies with a high

degree of control consistency and accuracy.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a depiction of a single rotor helicopter.

Figures 2a and 2b depict a Frasca International Bell 206 Flight Training Device (FTD).

Figure 3 is a block diagram depicting the interface between the optimal guidance and the

FTD.

Figure 4 is a Height-Velocity diagram for the Bell 206L-4 Helicopter Results.

Figure 5 is a diagram depicting the Automated autorotation flight conditions evaluated.

Figure 6 is a diagram depicting the touchdown ground-speed and sink-rate (light weight

condition).

6

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

the touchdown ground-speed and sink-rate (medium and

heavy weight conditions).

Figure 8 is a diagram depicting a time history for selected flight and control parameters

for simulated automatic autorotation from 200ft/0kts; light weight condition (2900 lbs).

Figure 9 is a diagram depicting a time history for selected flight and control parameters

for simulated automatic autorotation from 400ft/0kts; light weight condition (3100 lbs).

Figure 10 is a diagram depicting a time history for selected flight and control parameters

for simulated automatic autorotation from 20ft/70kts; light weight condition (3085 lbs).

Figure 11 is a diagram depicting a time history for selected flight and control parameters

for simulated automatic autorotation from 300ft/60kts; light weight condition (3085 lbs).

Figure 12 is a diagram depicting a time history for selected flight and control parameters

for simulated automatic autorotation from 400ft/0kts; heavy weight condition (4440 lbs).

Figure 13 is a diagram depicting a schematic illustration of a first embodiment of the

current invention adapted for training rotorcraft pilots on a flight simulator.

Figure 14 is a diagram depicting a system schematic of the current invention.

Figure 15 is a diagram depicting a description of guidance visual display components as a

part of the current invention.

Figure 16 is a diagram depicting a schematic illustration of a second embodiment of the

current invention adapted for automatically guiding a manned or unmanned rotorcraft.

Figure 17 is a diagram depicting a schematic illustration of a third embodiment of the

current invention adapted as a computer-based training device for autorotation/reduced-power

emergency flight.

INDUSTRIAL APPLICABILITY OF THE INVENTION AND MODES FOR CARRYING

OUT THE INVENTION

The present invention is directed to systems for autorotation flight control, and in

particular to computer implemented systems that provides directions for controlling the flight of

7

WO 2006/076647 PCT/US2006/001347

helicopters or of other rotorcraft upon loss of power to maximize the likelihood of a safe landing.

The present invention may take the form of various embodiments, such as for example in a

system adapted for a flight simulator for single engine, single rotor helicopters, a flight simulator

for multiple engine, single or multiple rotor helicopters or a flight simulator for other rotorcraft.

5 Embodiments of the present invention may also take the form of control systems for use in real

working helicopters or other rotorcraft (as opposed to a simulator). When adapted for use in

piloted working aircraft, the system is be adapted to provide display information for controlling

the flight of the aircraft to maximize the likelihood of safe landing and/or is be adapted to

provide automatic control inputs to the aircraft for such landings. When adapted for use in

10 drones or other aircraft without pilots the system is be adapted for providing remote display for

remote control of the aircraft and/or for automatic control inputs to the aircraft.

In the following description, numerous specific details are set forth to provide a more

thorough description of embodiments of the invention. In light of the present disclosure, other

embodiments will become obvious to those of ordinary skill in the art and such embodiments are

15 within the scope of the present invention. It will be apparent, however, to one skilled in the art,

that the invention may be practiced without these specific details. In other instances, well known

features have not been described in detail so as not to obscure the invention. Except as noted

herein, common components and connections, identified by common reference designators

function in like manner.

20 In the description and included mathematical expressions the symbols used have the

definitions or meanings stated in the following key to nomenclature:

a rotor blade two-dimensional lift curve

slope (rad'1)

CP power coefficient

25 CT thrust coefficient

(CX,CZ) (horizontal, vertical) component of

thrust coefficient

8

5

10

15

20

25

WO 2006/076647

Ĉo mean profile drag coefficient of rotor blades

fe equivalent flat plate area for fuselage (ft2)

/ g ground effect factor

fl induced velocity factor

g gravitational acceleration (ft/s2)

(M) (vertical, horizontal) position (ft)

hub rotor hub height when helicopter is on

the ground (ft)

h polar moment of inertia of the main

rotor blade (slug-ft2)

J cost function

Kind induced power factor

m mass of helicopter (slugs)

h available shaft power (Ibf.ft/s)

Pres residual shaft power (lbf.fit/s)

R main rotor radius (ft)

estimated flight time (s)

(m,w) (horizontal, vertical) velocity

components (ft/s)

a tip path plane angle (rad)

r weighting factor in cost function

collective pitch angle position (rad)

Scoi normalized collective pitch angle position

Seyc normalized longitudinal cyclic position

V helicopter power efficiency factor

A rotor inflow ratio

P rotor advance ratio

PCT/US2006/001347

9

WO 2006/076647 PCT/US2006/001347

p air density (slugs/ft)

a rotor solidity ratio

t p
turboshaft engine time constant (s)

0 aircraft pitch angle (rad)

Q main rotor angular speed (rpm)

V rotor induced velocity (ft/s)

u h induced velocity at hover (ft/s)

O o initial values at engine failure

0 max maximum value allowed

Omin minimum value allowed

0 ref reference value

0 nom reference value

The Rotorcraft Model

The rotorcraft equations of motions are detailed below.

rnw = mg - p(jtR2)(Qi?)2 C2 —- pfpv4u2 + w22 (1)

mu - p(nR1)(ClR)2C x - —pfcu j u 2 + w2
2 (2)

/„QQ = Ps - - p{nR2)(QR)2 CP
(3)n

£1II•-JC (4)

d - u (5)

Ps=-(Pr'S-Ps)
TP (6)

10

10

WO 2006/076647 PCT/US2006/001347

where, res is the steady-state power remaining following a throttle cut during a

simulated engine failure.

In Eq. (6) a first order response is assumed for turboshaft engines (Ref. 4). The

coefficients are defined as:

C p (TC ̂ + Cj'X

Cx = CT sin a

Cz = CT cos a

(7)

(8)

(9)

X is the inflow ratio defined as (Ref. 4):

u sm a-w cosa + vA = -
a r

and the induced velocity v is approximated as:

V = Kin^hflfo ■

V/1 is the reference induced velocity at hover defined as:

(10)

(11)

(12)

The induced velocity parameter f\ is defined as the ratio of the actual induced velocity to

15 the reference velocity Vh. The following expression is used to determine f-.

= | 1/^ 2+(a + 7 i)2) If(2a + 3)2 +b1 >1.0;
[a(.373a +.5986 -1.991) otherwise

where, a and b are defined as:

(13)

a = ■
us,ma-M>cosa

b = ucosa + M'sina
K

(14)

(15)

11

WO 2006/076647 PCT/US2006/001347

The term fa accounts for the decrease in induced velocity due to ground effect. The

source model (Ref. 4) appears as:

f o = 1 -
R 2cos26w

\6(h + H R)2

where,

cos2 e w
(-wCr + vC2) 2

(—w C j. + vC2) 2 + (u C r + iC ^) 2

(16)

(17)

The tip path plane angle a and the aircraft pitch angle 6 are effectively equivalent for the

purposes of aircraft control. The collective pitch, computed using blade element theory (Ref. 2),

appears as

8, =

(1+V) (^)+ l 2(1 i 2)
2 aa 2 2

O - / '2 + 7 A*)4 (18)

where cr and a are the rotor solidity ratio and rotor blade two dimensional lift curve slope

respectively. The advance ratio n is defined as

ucosa + wsma
OR (19)

The Optimal Autorotation Problem Formulation

A direct method of optimization was used following the work done by Carlson in Ref. 7.

In the direct method the two-point boundary value problem is transformed into a parameter

optimization problem. In such a formulation the states and controls are the parameters to be

solved satisfying the dynamics and other physical limitations at discrete points in time (nodes),

which can be solved using standard non-linear programming methods and software. The direct

collocation method is used where both the rotorcraft states and controls are discretized

WO 2006/076647 PCT/US2006/001347

throughout time and the rotorcraft equations-of-motion are imposed as a set of non-linear

equality constraints at each point in time (or node). Based on the experience documented in Ref.

7, this method has a better convergence radius with a wider range of initial guesses (more robust

to initial guess values) than other parameterization methods. The disadvantage of this method is

5 that the dimension of the problem becomes large due to the discretization of the states and

control at each node or point in time. As in Ref. 8, the parameter optimization problem was

solved using the Sequential Quadratic Programming (SQP) algorithm as implemented in the

SNOPT software package (Ref. 15).

The Constraints On Solution of the Problem

10 (a) Equality Constraints

1. Initial Value Constraints

States: (0, uq, Qq, ho, 0, Po)

Controls: (CT<j ,ao)

2. Final Value Constraints

15 States: (<w, °o, °o, 0, «?, «?)

3. Equations of Motion at each node

(b) Inequality Constraints

1. State Constraints

— w < w ^ wmax — max

20 0 <u <oo

f̂ min - ^ — ^max

0 < h < oo

0 < d < co

0 < Ps <00

13

WO 2006/076647 PCT/US2006/001347

T. 'Control's''Constraints:

CT < CT < c 7

“ min ^ ^ “ max

The above constraints on states and controls are defined by

= 6 0 ^ s
^min = 0.75Q q

5 f l .= 1 .0 5 n ,
“ min = -20 deg
“ max =34 deg

where, and a,r>ax are chosen as the minimum and maximum pitch values observed in
C C Cflight test data (Refs. 16 and 17). and T are aircraft-specific, with T associated with
C

the minimum collective pitch, and Twax associated with blade stall. Also, to impose realistic

collective range, the collective bounds are implemented such that:

10 ?colm <: SC(J, < 8,colm

The conversion between Scol and Cj has been performed via Eq. (18) and an iterative

method based on trim estimation. The constraint on the pitch angle near the ground has been

imposed to prevent the tail from hitting the ground. The constraint is the function of aircraft

geometry, such as the tailboom length, and altitude, and, as a result, the optimal solution

15 guarantees that the aircraft’s tail doesn’t hit the ground at the final touchdown.

The Objective Function

The objective function is the sum of weighted penalties consisting of forward speed and

sink rate at the final touchdown as well as the control rates for thrust coefficients and tip path

angles at each node. The minimization of control rates provides smoother and consistent

20 behavior of optimal solutions.

14

WO 2006/076647 PCT/US2006/001347

•/ = a .E
1=1
N -

+ & E

^ lrcr (/ + l) - c r (/)n2

1=1

At

a (i + 1) - a (i)n2
At

(20)

+ Q3(\)2 +Q3(W!f)2

where, i is the node number (where i — 1 is the first node at t = 0) and Q\ represents

5 proper weighting factors that is selective for best performance.

Validation of the algorithm using flight data was presented previously (Ref. 18) and

showed that the optimal trajectories computed with this formulation were reasonable when

compared with those accomplished by an expert pilot in flight tests.

The Flare Law

10 In real-time application for automated autorotation, performance differences between the

rotorcraft dynamics and the point-mass model used in the optimization as well as simulation

tim ing issues cause a mismatch in the altitude predicted by the optimization algorithm and the

actual altitude of the rotorcraft (simulation, in this case). During initial development it was

noticed that this mismatch caused the rotorcraft to flare too early or too late. To compensate for

15 these deficiencies, a flare law was devised that would take over from the optimal guidance at a

pre-determined altitude near the ground and flare the rotorcraft based on a more conventional

compensatory control law. In practical terms, this flare law attempted to recreate the final flare

and landing performed by a pilot based on outside visual cues. The purpose of the optimal

trajectory was to bring the rotorcraft to a pre-flare altitude at an energy condition that was

20 conducive to a safe flare and landing.

The flare law is preferably activated at a height of approximately 30 ft above ground and

uses a non-linear algorithm to modulate airspeed through rotorcraft pitch attitude and to

modulate rotor-speed and sink-rate through collective control. The activation altitude required

15

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

some adjustment during development and evaluation to compensate for the variations in aircraft

weight.

Brief Description of the Simulator

Development and evaluation of the automatic autorotation and autorotation flight director

display of the present invention took place on a commercial helicopter Flight Training Device

(FTD) manufactured by Frasca International, Urbana, IL. Although not officially certified, the

FTD used for the evaluation incorporated a level of fidelity necessary for achieving FAA

Certification as a Level 4 FTD. The FTD was a fixed-base simulation of a Bell-206L-4 single­

turbine, single rotor helicopter (Figure 1) with a realistic reproduction of the cockpit with a frame

and dual controls and a dome visual system with 180-deg horizontal and 60-deg vertical visual

field-of-view (Figure 2). An additional graphics channel provided visual imagery immediately

below the cockpit door and through the chin window on the pilot’s side. The cockpit controllers

were replicas of the actual cyclic, collective and pedal controls and had realistic feel.

Complete engine failures could be triggered from the simulator operator’s station at any

time. Engine failures resulted in immediate loss of all engine power and the activation of

appropriate warning lights and audio alarms. A low-rotor RPM warning light was also provided.

The rotorcraft simulation model was a rotor disk model with aerodynamic models for the

fuselage and empennage surfaces. The rotorcraft model had previously been evaluated by line

pilots as part of the FTD acceptance testing and found to be representative of the actual aircraft

in the regular and autorotation flight regimes. The primary development pilot for this project, Ed

Bachelder, an experienced helicopter pilot (SH-60B pilot) also found the rotorcraft simulation to

be realistic.

16

WO 2006/076647 PCT/US2006/001347

Implementation of the Optimal Guidance Algorithm

With reference to Figure 3, a block diagram indicates how a laptop personal computer

(PC) running the real-time optimization algorithm was linked with the Frasca simulation

computer.

5 The PC used for the development and evaluation of the optimal guidance was a

conventional commercial laptop PC with a 2 GHz Intel Pentium® processor and a Windows

2000® operating system. The PC accepted rotorcraft state and control information at a nominal

30Hz data rate and output collective, cyclic, and pedal control positions to the simulation

computer, also at a 30Hz data rate. Communication was facilitated through an Ethernet link

10 using standard Microsoft Windows compatible communication protocol. During powered flight,

the optimal algorithm continuously updated the optimal solution based on the rotorcraft states

(primarily speed and altitude) being received from the simulation computer. In effect, the

optimizer continuously computed an updated optimal trajectory for autorotation with the

assumption that an engine failure had just occurred. Typically, a new update was available every

15 3 sec-or sooner. Initially, when an engine failure occurred, the automatic autorotation guidance

was based on the last optimal trajectory update that was available. As presently implemented,

the optimal trajectory is updated throughout the autorotation maneuver. The optimal guidance

algorithm considers only the optimal trajectory in the longitudinal axis (collective and

longitudinal cyclic commands only). During the development and evaluation process a simple

20 compensatory feedback control was implemented to maintain roll attitude and heading via lateral

cyclic and pedal commands.

During the development and evaluation process a guidance display was generated on the

laptop computer to provide an indication of how well the helicopter was following the optimal

guidance during automatic autorotations. For piloted operations of actual working aircraft, such

25 as with a remote operator, the display is used as a flight director to guide the operator on the

optimal control timing and magnitude inputs required to accomplish a safe landing. The

17

WO 2006/076647 PCT/US2006/001347

guidance display includes a novel display concept that guides a human operator in following and

performing the optimal control inputs by providing a preview of the complete trajectory.

The primary intent of the development and validation of the optimal guidance algorithm

in this real-time simulation environment was to evaluate the robustness of the guidance

5 ■ algorithm across the flight envelop of the simulated helicopter. Invariably, however, emphasis

was placed on the “worst case” flight conditions; i.e., entry into autorotation from flight

conditions that are well within the “avoid” region of the height-velocity diagram for this

helicopter (shown in Figure 4) as these clearly illustrate the benefit of the optimal guidance

provided by the present invention. Development and refinement of the optimal guidance

10 algorithm and its real-time mechanization at flight conditions within the “avoid” region of the H-

V diagram also maximizes the probability that the guidance provided by the present invention

will enable safe autorotations from flight conditions outside the avoid region. The majority of

the development and evaluation of the optimal guidance and the flight director display was

performed at a vehicle light-weight condition with limited evaluations at the vehicle heavy

15 (maximum gross weight) and medium weight conditions.

The optimal control algorithm uses a simple point-mass type model for the rotorcraft.

For the algorithm to provide appropriate autorotation guidance, therefore, it was necessary to

fine-tune the point-mass model parameters such that the dynamics and performance of the point-

mass model approximated the rotorcraft model as implemented in the simulator as closely as

20 possible. For automated autorotations, it was particularly important to scale and bias the optimal

control inputs computed by the optimal algorithm so that it would be able to backdrive the

simulation correctly. An automated procedure was setup using Matlab® to facilitate this

parameter optimization process using rotorcraft state and control time history data obtained from

the simulator.

25

18

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347
The Simulator Results

Following three-week period of development on the Frasca FTD in Urbana, IL, the

automatic autorotation capability was refined to an extent that allowed evaluation of the

algorithm over a range of autorotation entry conditions. The entry conditions that were

attempted at light (2900 lbs), medium (3500 lbs), and heavy (4450 lbs) vehicle weight

configurations using the automatic autorotation guidance are presented on a height-velocity

diagram in Figure 5. The manufacturer’s height-velocity “avoid” regions are indicated in Figure

5 by dashed lines labeled for the rotorcraft’s weight. Successful landings are shown as open or

clear symbols and crash landings are shown as solid or filledl symbols. Crash landings represent

those where the touchdown sink-rate or forward speed exceeded the manufacturer’s specified

limitations for the rotorcraft. Tail-strikes were also counted as crash landings. The

determination of a safe or crash landing was made by the Frasca simulation software.

As may be observed with reference to Figure 5, it is clearly established that using the

optimal guidance of the present invention, safe autorotations are possible from well inside the

“avoid” regions of the H-V curve including the high-speed region. Fewer evaluations were

conducted at the medium and heavy vehicle weight conditions. At the heavy and medium

vehicle weight conditions, it is expected that refining the constraints (rotor-speed and vertical

speed limits, for example) as well as the flare law parameters would have allowed greater

success than was demonstrated during the course of development and evaluation of the

algorithm. Nevertheless, safe landings were accomplished at these weight conditions from well

within the “avoid” regions of the H-V curve for these weights, although not with the consistency

that was achieved at the light-weight condition.

The touchdown sink-rates and forward speeds for all the automated autorotation entry

conditions shown in Figure 5 are presented in Figure 6 (light-weight condition) and Figure 7

(medium and heavy weight conditions). Figures 6 and 7 indicate that, in most situations,

touchdown conditions were well within the limitations of the rotorcraft. Almost all the landings

19

WO 2006/076647 PCT/US2006/001347

were accomplished with some forward velocity. This is especially true in the heavy and medium

weight conditions. This is primarily due to the use of the flare law for the landing. Examination

of the optimal solutions for these evaluations indicated that if the helicopter had been landed

using the optimal algorithm (assuming the aforementioned technical difficulties were resolved),

5 the forward velocities at touchdown would have been reduced.

Selected representative time histories for the automated autorotations are presented in

Figures 8, 9, 10, and 11 for the light weight condition and Figure 12 for the heavy-weight

condition. In each of these examples, the engine is failed at time t = 0 and the displayed time

history is ended when touchdown is registered by the simulation computer. Figures 8 and 9

10 demonstrate the extreme nature of the maneuver that is required when autorotating from a hover

at 200 ft and 400 ft altitude (above ground level). Figures 8 and 9 demonstrate that it is possible

to autorotate safely from well within the avoid region of the H-V curve, if the control inputs are

well-timed and of appropriate magnitude. At the lower entry altitude (Figure 8), immediate nose

down pitch attitude of approximately 30 degrees is commanded whereas collective is lowered to

15 zero over a period of roughly 3 sec following engine failure. A pitch pull-up is commenced at an

altitude of approximately 100 ft continuing into a landing flare using pitch attitude and collective

input at approximately 50 ft altitude. The sharp discontinuity in the longitudinal cyclic at

approximately 50ft altitude marks the transition from the optimal algorithm to the flare law.

Rotor speed is maintained above 80% throughout most of the maneuver with rotor speed

20 reducing to 60% at touchdown as rotor speed is sacrificed to reduce the touchdown sink rate. No

attempt was made to refine the algorithm to smoothly transition between these modes, hence the

sharp discontinuity. Modification of the algorithm and/or the flare law to smooth the transition

between these modes is within the skill of one of ordinary skill in the art and is within the scope

of the present invention.

25 With reference to Figure 8, the longer maneuver time allowed by the higher entry altitude

is evident. The collective is lowered immediately but there is no command to push the nose over

or pitch down and gain airspeed "until the rotor-speed approaches its lower constraint of 75%. To

20

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

maintain rotor speed above the constraint of 75%, the optimal guidance algorithm trades altitude

for airspeed and for maintaining rotor speed. With reference to Figure 9, a maximum nose-down

pitch attitude of 40 degrees is observed. A run-on landing is achieved at a forward speed of

approximately 20 kts and a touchdown sink rate of almost zero.

Figure 10 demonstrates the effectiveness of the optimal guidance algorithm for an entry

condition in the high-speed “avoid” region of the H-V curve. Due to the low altitude, the flare

law almost immediately overrides the optimal algorithm. The helicopter is commanded to pitch'

up and trades airspeed for rotor-speed and altitude, placing it in a suitable energy state for a safe

flare and touchdown at a forward speed of less than 10 kts. Figure 11 demonstrates an

autorotation from an entry condition that is outside the manufacturer’s recommended avoid

region of the H-V curve for the light-weight condition. In response to the optimal guidance

commands, the helicopter initially pitches nose-up to reduce airspeed followed by nose-down

pitch to gain airspeed and maintain rotor speed above the constraint limit of 75%. Touchdown is

achieved at a sink rate of 3 ft/sec and a forward speed of 40 kts.

The capability of the automatic guidance algorithm of the present invention to safely

autorotate for the heavy-weight condition is demonstrated in Figure 12. The engine is failed

when the helicopter is at a hover at an altitude of 400 ft above ground. When contrasted with an

autorotation from a similar entry condition for the light-weight condition (Figure 9), the

helicopter sinks more rapidly resulting in a shorter flight time. The optimal guidance commands

an almost immediate push-over to gain airspeed (contrast with almost no pitch input for several

seconds in Figure 9) and maintain rotor-speed with a very rapid pull-up to about 35 degrees to

arrest sink rate at low altitude. The pull-up results in the rapid increase in rotor-speed to

approximately 100% which is traded-off for sink-rate reduction using collective. Touchdown is

achieved at a sink rate close to zero and a forward speed of 27 kts. As would be expected the

heavier weight conditions proved to leave very little room for computational or timing errors.

The appropriately formulated optimization algorithm of the present invention may be

used to provide autorotation guidance in real-time to a rotorcraft This “automated autorotation”

21

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

capability is beneficial on unmanned rotorcraft where redundancy for failure management is not

necessarily a primary design requirement. The present optimal guidance method has

demonstrated a repeatable capability to safely autorotate a helicopter from a variety of entry

conditions and a range of weights, even when these entry conditions are well within the avoid

region of the height-velocity diagram.

Display Implementation

The present invention relates to a human-operator cueing and training methodology using

optimal control for application to the time critical maneuvering of dynamic systems including

vehicles. The methodology can also be used for automated guidance of dynamic systems through

time critical maneuvers. The description of the invention uses a particular application example of

rotorcraft pilot training and automatic guidance. Figure 13 illustrates the invention when applied

for training rotorcraft pilots on autorotation and reduced-power flight using a flight simulator. In

this application (Figure 13), a standard PC with the invented system installed is linked with a

flight simulator and accepts rotorcraft state and control information from the connected flight

simulator. Communication uses an Ethernet link using standard Microsoft Windows compatible

communication protocol. During powered flight, the optimal algorithm continuously updates the

optimal solution based on current rotorcraft states being received from the simulation computer.

Thus the optimizer continuously computes an updated optimal trajectory for autorotation with

the assumption that an engine failure had just occurred. Typically, a new update is available

within a couple of seconds. When an engine failure occurs, the automatic autorotation guidance

is based on the last optimal trajectory update that was computed. The optimal algorithm

considers only the optimal trajectory in the longitudinal axis (collective and longitudinal cyclic

commands only).

Figure 14 describes the software implementation of the optimal algorithm as a flowchart.

The software starts with initializing all necessary rotorcraft parameters and setting all necessary

22

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

constraints and costs to compute the optimal controls. The parameters are vehicle specific so that

they can be adjusted for different vehicles and dynamic systems — a rotorcraft in this application.

Next, the current flight conditions as well as the current environmental information such as wind,

weight changes, and atmospheric temperature changes to computes air density are read into the

software. The rotorcraft collective control input position from the flight simulator is converted to

thrust that is used in the rotorcraft dynamic model to compute optimal controls. The software

also estimates the best guess values of optimal controls to facilitate the computation of the

optimal guidance solution. After the software finishes the computation, it converts the optimal

thrust solution to collective and cyclic control inputs that can be displayed on the guidance

display.

A guidance display is also generated on the PC that provides a preview of the optimal

control solution with time and facilitates tracking of the optimal solution by the pilot through the

maneuver. To learn the optimal control inputs necessary for safe recovery from the power-loss or

reduced-power situation, the pilot simply has to track the guidance lines as discussed below.

Repeated flights on a flight simulator using this guidance will provide the pilot with a clear

understanding of the control inputs and rotorcraft trajectory to be flown for safe recovery. Figure

15 illustrates the guidance display.

With reference to Figure 15, the rotorcraft or helicopter symbol (1) is denoted by a

stylized graphic intended to be readily recognized as a side view of a helicopter and the key

aircraft states are anchored to tins symbol to facilitate rapid mental processing as the symbol

moves on the display. The helicopter symbol (1) also pitches with the helicopter pitch. The

dimensions of the helicopter symbol (1) are drawn to scale with the altitude axis so that the pilot

can see when tail contact is imminent and the relation between tail height and pitch.

With further reference to Figure 15, the helicopter tail acts as a pointer to the radar

altimeter readout (2). The radar altimeter readout (2) is preferably positioned behind or aft of the

helicopter symbol (1) on the display. A series of short horizontal lines arrayed vertically or

stacked below the helicopter symbol (1) is an altitude pipper or height above ground markers (3)

23

WO 2006/076647 PCT/US2006/001347

which indicate the height-above-ground by short horizontal lines or markers corresponding

preferably to heights of 150, 80,40, 20, 10, and 0 feet If the helicopter is above 150 feet (as in

Figure 15), the helicopter symbol (1) will remain fixed at the 150 feet marker until the altitude

goes below 150 feet, at which point the helicopter symbol (1) begins descending. A rotor speed

5 indicator (4) includes a rotary pointer and digital readout box that is positioned above the

helicopter symbol (1). The rotor speed indicator (4) changes from steady to blinking if the rotor

speed falls below 90 % or rises above 110 %. A forward speed indicator (5) emanates and

extends as a (body-axis referenced) vector from the nose of the helicopter symbol (1). The

length of the vector (5) is in direct proportion to the forward speed of the helicopter. The forward

10 speed readout in knots is tagged to . the head of the forward speed indicator vector (5). A vertical

speed indicator (6) vector (ground referenced) emanates and extends vertically downward from

the tail of the helicopter symbol (1). The vertical speed vector (6) originates from the tail since

this is the natural point of interest for that state. The forward and vertical speed vectors are

shown in Figure 15. The scales on the vertical and forward speeds are identical and dimensioned

15 with respect to the radar altimeter (i.e., 10 fps corresponds to a 10 foot increment on the altimeter

(2)). The ticks on the vertical speed vector correspond to 5 fps, while on the forward speed bar

ticks denote 10 knots increments. It is to be noted that the lengths of these vectors are scaled so

that the pilot can weigh them equally. When the vertical speed vector touches the ground

reference marker (attitude pipper), there is one second remaining prior to tail contact (based on

20 the current vertical speed), at which time the pipper blinks in intensity to alert the pilot of the

impending contact. This unique feature results from the scaling chosen, allowing the pilot to

refine control timing.

With continued reference to Figure 15, a collective range setting indicator (7) scale is

positioned on the display to the left of the altitude pipper or height above ground markers (3).

25 The white ticks on the collective indicator (7) denote the 0% and 100% collective positions. The

rotor blade stall limit indicator (8) (red bar) shows the collective setting corresponding to the

blade stall limit at that particular point in time, and it varies considerably throughout the

24

5

10

15

20

25

WO 2006/076647 PCT/US2006/001347

autorotation. The collective range setting indicator (8) moves correspondingly with the collective

inputs from the pilot. A left-pointing triangle (9) positioned below the altitude pipper (3) and to

the right of the collective indicator (7) points to and tracks the current collective position. If this

collective tracker pointer (9) nears or exceeds the rotor blade stall limit, it will change from a

steady preferably white color to blinking alternating colors to alert the pilot that lift will be lost.

One aspect of the maneuver that is almost never considered in autorotation training is the stall

limit (presumably because one can't see it or predict it with the standard instrument layout), but it

easily exceeded, to the detriment of the maneuver. This limit is predicted based on the point-

mass helicopter model. The pointers are fixed in the display to allow the pilot better tracking.

The collective range indicator moves with the collective input from a pilot so that the pilot can

have a clear idea of his current collective input and the overall possible range of collective

movements. A right-pointing triangle (10) positioned below the altitude pipper (3) and to the

right of the collective tracker pointer (9) points to and tracks the current pitch position. The white

right-pointing triangle below the altitude pipper points to the current pitch position. For example,

the pilot should follow the pitch commands displayed in Figure 15 with the pitch tracker pointer

(10). Time marks (11) are displayed on the optimal collective and pitch commands as tick marks

for every second to give a pilot a better preview of overall profiles and the anticipated time

remaining to complete maneuver.

Referring further to Figure 15, the sideslip indicator (12) is shown below the attitude

pipper as a ball referenced to a fixed vertical centerline. The sideslip indicator ball will move to

the right or left with respect to the nominal centerline in response to corresponding sideslip. The

engine turbine speed indicator (13) is shown on the upper right of the display as a rotary pointer

and digital readout box for displaying percent of turbine maximum speed. Guidance commands

to the collective (left white line) and pitch (right white line) are displayed as time profiles for the

collective director (14) command suite and pitch director (15) command suite, with a time tick

for every second. The contact points with the collective and pitch pointers represent the present

time or time equal to zero. The command profile lines indicate the anticipated time to complete

25

WO 2006/076647 PCT/US2006/001347

autorotation in seconds. These profile lines move in time so that the collective command profile

scrolls right and the pitch command profile scrolls towards the left. The pilot must move the

controls to minimi7.fi the vertical separation between the current control setting (left collective

tracker pointer (9), right pitch tracker pointer (10)) and the coincident command. A crucial

5 advantage that the present display has over the more traditional flight director is that the pilot is

given a highly usable view of future control motion and time. Using this preview the pilot can

anticipate control motion as well as anticipated time to complete maneuver, which is critical to

precise and timely control tracking. The optimal commands will change from steady color to

blinking with a different color when the “auto flare law” would be activated if the autopilot mode

10 were in use. In this way, a pilot will be alerted to prepare for the landing flare. The color of the

optimal commands change to denote the quality of optimal solutions. Due to the rapid changes of

entry conditions and numerical complexity associated with the optimization algorithm the

optimal solution might not have converged. In this case, the optimal commands change color to

indicate that the commands are not based on a converged solution, in which case the displayed

15 commands are from the last solution that converged.

Figure 16 illustrates the application of the invention to automatic control of a vehicle or

dynamic system (a rotorcraft in the example application). The implementation is similar to that

indicated in Figure 13 except that the optimal control solutions are fed back to the flight

simulator or actual vehicle and used to replace the normal control inputs. The optimal solution

20 will then guide the simulator or actual vehicle to a safe recovery from the power-loss or reduced-

power situation. When acting as an automatic guidance and control system, a compensatory

feedback control law is also implemented to maintain roll attitude and heading via lateral cyclic

and pedal commands and the system sends the optimal control commands to the simulator to

drive the simulator for safe landing in autorotation. A separate flare algorithm takes over near the

25 ground to compensate for possible differences in the rotorcraft dynamics between the system and

the simulator.

26

WO 2006/076647 PCT/US2006/001347

Figure 17 illustrates the application of the invention to a computer-based training device

for rotorcraft autorotation and reduced-power emergency flight situations. The basic operation of

the algorithm follows that depicted in Figure 14 except that there is no connection with a

simulation or flight vehicle. The optimal solution is displayed to the trainee pilot and the

5 simulated rotorcraft together with a computer-generated scene of the pilot’s view out of the

rotorcraft. When activated by the trainee pilot, the simulated rotorcraft follows the computed

optimal trajectory, providing the trainee pilot with an understanding of the rotorcraft attitudes,

path and control inputs necessary for safe recovery. The software will allow the trainee pilot to

adjust the rotorcraft initial and final conditions and examine the effect of these conditions on the

10 optimal solution.

In order to give the pilot proficiency at entering the autorotation profile, simulated engine

failure is initiated at various altitudes, airspeeds, and horizontal locations relative to a

geographically fixed landing site. This will exercise the full envelope of entry conditions without

the pilot having to indicate to the computer the intended point of touchdown. The display also

15 may be used as an on-board pilot preview of the optimal autorotation maneuver strategy. As the

helicopter readies for departure from a hover, the autorotation computer will begin computing

the optimal inputs and display them. The pilot would include the display in his instrument scan

so that if the engine were to fail at any given time an image of the control profile would be

mentally available. The entry into the autorotation would therefore be executed precognitively,

20 followed by scanning of the autorotation display and cockpit instruments during the steady-state

phase (if there is one) and just prior to the flare. In instances where out-of-balance flight is

required, (to prevent site overshoot, rotor overspeed, or to compensate for other conditions) the

pedal control profile will command appropriately so that the pilot may develop skill in slipping

the helicopter according to the situation.

25 The training display concept of the present invention where the operator is provided with

visual cues on where to place the controls at the current instant as well as provide a preview of

where the controls should be in the future (based on the optimal algorithm) has application to any

27

WO 2006/076647 PCT/US2006/001347

vehicle or device that requires time-critical inputs for safe operation. Employing trajectories and

control inputs using constrained optimization can be applied to any vehicle or device that

requires time-critical inputs for safe operation.

The concepts, algorithms and routines for implementing the real-time dynamic visual

5 display methodology of the present invention are further disclosed and described in the following

Table 1 which provides representative examples, in a common programming language, of

computer code capable of implementing the primary portions, but not the entirety, of the visual

display of the present invention in a suitable computer processing environment. Table 1 is a

listing of the computer code for the DrawDisplay.CPP display guidance-commands and flying

10 information routine of the Guidance-Commands Display and Communication Module of the

computer implementation of the present invention.

The scope of the appended claims will be clear from the entirety of the present disclosure.

It will be obvious to those of ordinary skill in the art that the concepts, algorithms and displays of

the present invention may be implemented in alternative code formulations and/or in other

15 programming languages and such alternative formulation or formulations are within the scope of

the present invention.

Thus, a real-time trajectory optimization method for guiding a rotorcraft in the event of

loss of engine power is described in conjunction with one or more specific embodiments. The

invention is defined by the following claims and their full scope of equivalents.

28

WO 2006/076647 PCT/US2006/001347

r =====
#include..
#include
#include
#include
#include
#include
#inc!ude
#include
^include
#inciude
#include

/* = = = = =
#inciude
#inciude
#include
#include
#include
/* = = = = = =

^include
/ * = =

#inc!ude

.<ipasetsd,.fer,
<^itidows':fi^'
<stdio.h>
<string.h>
<stdarg.h>
<gl\gi.h>
<gl\glu.h>
<gl\glaux.h>
<gl\glut.h>
<tlme.h>
<math.h>

“UnitConversion.H"
“LoadParams.H"
"Graphics.H“
"States.H0
"FlareLawParams.H"

"Optimize.H"

‘’DrawDisplay.H“

yr/-,Header File For Windows
/ / Header File For Standard Input / Output

// Header Fiie For The OpenGL32 Library
/ / Header File For The GLu32 Library
/ / Header File For The Giaux Library
/ / Graphics library
/ / Timing routines
/ / Math library
= = = = = = = == = === =^ ===== = ========:==5======== */

7

7
7

DrawDisplay::DrawDisplay()

agi a 0;
H alt_beg = 100;

land_flag = false;
/ / tlme_bias = 0.0;
}

DrawDisplay::~DrawDisplay()

void DrawDisplay::GetVa!ues(doubie _state[], double _ALP_NOW, double _COLL_NOW , double „colQ,
double _t_sim, double J J a il, double _t_fail_st,
bool _cmd_flag, bool _sim_init, bool JENGJFAIL, bool _ot_fiag,
double _chs_psi, int Jnform)

for (int i=0;i<NUMSTATES;i++) state[i] = _state[ij;

ALP_NOW = _ALP_NOW;
COLL_NOW = _COLL_NOW;

for (i=0;i<(sizeof(_col)/sizeof(double)) ;i++) col[i] = _col[i];

t_sim = _t_sim;
t_fail = _tJail;
t ja il„ s t = _tJail_st;

cmd J la g = _cmd J lag;
sim J n it= _sim Jnit;
ENG_FAIL = _ENG_FAIL;
o tjla g = _otJlag;

29
TABLE

WO 2006/076647 PCT/US2006/001347

r cfW_|fep=
inform = Jnform;

void DrawDispiay::RetumValues()

Int DrawDisplay.:DrawGLScene(OptResult *optR)

// Here's Where We Do All The Drawing

bool blink = false;
bool ts tjlag = false;
bool anti =true; //Antialiasing
bool SHAD = false;
bool FIMP = false;
boo! TILE =true;
bool AMRK = true;

double xtr, ytr, ztr, xtrt, ytrt, xsc, ysc, fact, gnd spd;
double trail;
double rgbf[4] = {1,1,1,.7};
char textl a[80],textl b[80],text1 Cp0],text2180],text3a[80]ptext3bt803,texf3c[80];
char text4[80J,text5[80],text6[80],text7[803,text8[80];
char text9[80], textl0[80],textl 1 [80],textl2[80],textl 3[80],text14[80],text15[80];
double thta_dif, thta_tile, lin_dif,sbias, abias.tbias.wbias;

if(!tst_flag)
{

trail = 100;
if (view — OUT_THE_WINDOW)

nn = 0;
en = 0;
dn = 0;

}
else if(view != OUT_THE_WINDOW)

nn = -cos(state[PSI] + chs_psi)*trai|;
en = -sin(state[PSI] + chs_psi)*trail;
dn = -5;

}
glPushMatrix();
if (view = OUT_THE_WINDOW) /* out-the-window view 7

/* Transformations to set up coords to draw ground */
glRotatef(90.0,0 .0 ,1 .0 ,0 .0);
g!Rotatef(90.0,1 .0 ,0.0 ,0 .0);

/* xyz are now oriented with body axis */

f* undo Euler angles */
glRotatef(-state[PHI] * 180.0 / PI, 1.0,0 .0 , 0.0);
glRotatef(-state|JHETA] * 180.0 / PI, 0 .0,1.0,0.0);
glRotatef(-state[PSI] * 180.0 /PI, 0.0, 0.0,1.0);

/* xyz are now oriented with NED axes, but still centered on aircraft */

/* undo vehicle's position V

30

WO 2006/076647 PCT/US2006/001347

tg t f r lM l f ^ M e [N b ^ T ^] 1''ltaie[EAST],-state[DOWN]);
}
else if (view = CHASEPLANE)
{ /* chase plane view 7

glRotatef(90.0,0.0,1.0,0.0);
g!Rotatef(90.0,1.0,0.0,0.0);

I* xyz are now oriented with body axis 7

I* undo Euler angles 7
glRotatef((-state[PSI] - chs_psi) * 180.0 /PI, 0.0,0.0,1.0);

/* xyz are now oriented with NED axes, but still centered on aircraft 7

I* undo vehicle’s position 7

gIT ranslatef(-(state[NORTH]+nn), -(state[EAST]+en), -(state[DOWN]+dn));

/* enter viewing transforms here to create proper chaseplane view 7
}
else
{ r (view = TOWER) --> tower view 7

l* enter viewing transforms here to create proper tower view 7
}

glClear(GL_COLOR_BUFFER_BlT | GL_DEPTH_BUFFER_BIT);

if(view = CHASEPLANE)
{

' glPushMatrix();
draw_plane();
draw_helshadQ;.
gIPopMatrixO;

}
draw_ground_plane();
if(tlLE)draw_ti!es();

if(SHAD)draw_shad();
if(FiMP)drawJmp();
draw_tchdwn();
glPopMatrixQ;

/* draw own aircraft if view from chaseplane or tower 7

if (view == OUT_THE_WlNDOW)
{
gIPushMatrixO;
glDisable(GL_DEPTH_TEST);

/ / draw_pip();
I I draw_iadder();
/ / draw_roll();

if(t_fail < 4)draw_torque();
draw_rpmO;
draw_coll();
draw_alt();

31

WO 2006/076647 PCT/US2006/001347

draw_bug();
draw_bal!();
if(cmdjlag)
{

If if(inform — 0 [Inform = 4 1| inform — 9)
if(inform = 0 [inform == 4 && 1ENG FAIL)
{

11 {
update_cmds(optR);

I I draw_cmds(optR);
// }

}
d raw_cmds(optR);

}

glEnable(GL_DEPTH_TEST);
gIPopMatrixQ;

}
I* draw own aircraft if view from chaseplane or tower */

glEnabla(GL_TEXTURE_2D);
gIBindT exture(GL_TEXTURE_2D, texture[0]);
fact = .01;
xtr = -520.0*fact; ytr = -380.0*fact; ztr = -1000.*fact;
xsc = 1.f‘ fact; ysc = 1.f*fact;

strcpy(text1a, "CENTER MOUSE, PRESS 'C‘ KEY, LEFT CLICK MOUSE"):
strcpy(text1 b, "PRESS 'C' KEY, PULL TRIGGER SWITCH"):
strcpy(text1c, "PRESS 'C' KEY");
strcpy(text2, “Autopilot Mode");
strcpy(text3a, “Mouse Control0) ; ,
strcpy(text3b, "Joystick Control");
strcpy(text3c, "Keyboard Control");
strcpy(text4, "GHOST");
strcpy(text5, "T”);
strcpy(text6, “KTS");
strcpy(text7, “AGL“);
strcpy(text8, “FPS");

strcpy(text9, “DEG");
strcpy(text10, “AIRCRAFT STATES AT TOUCHDOWN:");
strcpy(text11, "SINK RATE (FPS)");
strcpy(text12, "PITCH (DEG)“);
strcpy(text13, "GND SPD (KTS)1');
strcpy(text14, "NR (Perc)“);
strcpy(text15, "STALL MARGIN (Perc)");

xtrt = xtr;
ytrt« ytr;

gnd_spd = sqrt(state[U]*state[U] + s'tate[V]*state[V]);
if(simjnit){

/ / thta jile = atan(ALTJNIT/(GNDSPD*TTGO))*57.3;
thta_tile = atan(400.0/(GNDSPD*TTGO))*57.3;
thta__dif = FOV/2 - thtajile;
lin_dif = (520/(FOV/2))*thta_dif;

32

WO 2006/076647 PCT/US2006/001347

if(view = CHASEPLANEK

if(agl <10.)abias = 16.;
else if(agl >= 10. && agl < 100.)abias = 8.;
else abias = 0.;

if(state[U]/1.69 < 10.)sbias = 16.;
else if(state[U]/1.69 >=10. && state[U]/1.69 < 100.)sblas = 8.;
else sbias = 0.;

if(state[W] < 10.)wbias = 16.;
else if(state[W] >=10. && s(ate[W] < 100.)wbias = 8.;
else wbias = 0.;

if(state|THETA]*rad2deg < 10.&& state[TI-IETA]*rad2deg >= 0.)tbias = 16.;
else if{statejTHETA]*rad2deg >=10. && state[THETA]*rad2deg < 100.)tbias = 8.;
else tbias = 0.;

glPrint(bHnk(xtr+(840+abias)*fact)ytr+400*fact,2tr,xsGIysGl1)rgbf[0]Trgbf[1],rgbf[2])rgbf[3]1"%1.0f',agl);
glPrint(blink,xtr+(840)*fact,ytr+380*fact,2tr,xsc,yscl1,rgbf[03,rgbf[13,rgbf[2],rgbf[3]Itext7);
glPrint(blink,xtr+(180+sbias)*fact,ytr+40Q*fact,ztr,xsc,ysc,1 ,rgbf[03,rgbf[13,rgbf[2],rgbf[33,"%1 .Of “,state[U}/1.69);
glPrint(blink,xtr+(180)*fact,ytr+380*fact,ztrlxsc,ysc,1lrgbf[0],rgbf[1],rgbf[2]lrgbf[3],texts);

glPrint(blink,xtr+(840+wbias)*fact,ytr+300*fact>ztr,xsc,ysc,1Irgbf[0),rgbf[1],rgbff2],rgbft33,u%1 .0f",state[W3);
glPrint(blink,xtr+(84Q)*fact,ytr+280*fact):rtrlxsclysc,1,rgbf[0],rgbf[13>rgbf{2J)rgbf[3],text8);

} .
// if(state[ALT]/hfct < 5)land_flag = TRUE;

if(land_flag){
glDisable(GL_DEPTH_TEST);
g!Print(blinkIxtr+(600)*fact,ytr+220*factlztr,xsc,ysc,1 ,rgbf[0l,rgbf[1],rgbf[2],1 .,text10);
gtPrint(blink,xtr+(6Q0)*fact,ytr+180*fact>ztr,xscIysc,1 ,rgbf[0],rgbf[1},rgbf{2],1 .,1ext11);
glPrint(blink,xtr+(6Q0+300)*fact,ytr4-180*fact,ztr,xsc,ysc,1 ,rgbf[0],rgbf[1 J,rgbf[23,1 „"%1.Of,state[W}/wfct);
glPrint{blink,xtr+(600)*fact,ytr+160*fact,ztr,xsc,ysc,1,rgbf[0),rgbf[1],rgbf[2],1.,text12);

glPrint(b!lnk,xtr+(600+300)*fact,ytr+160*fact,ztr,xsc,ysc,1,rgbftO],rgbf[1]lrgbf|;2]l1.,,'%1.0f",state[THETA]*rad2deg);
glPrint(blinkIxtr+(600)*fact,ytr+140*fact,ztr,xsc,ysc,1,rgbf[03,rgbf[1],rgbf[2],1.,text13);
glPrint(blink,xtr+(600+300)*fact,ytr+140*fact,ztr,xsc,ysc,1,rgbf[0],rgbf[13,rgbf[2),1.l,'%1.0f",state[Ul/1.69/ufct);
glPrint(blink,xtr+{6Q0)*fact,ytr+120*fact,ztr,xsc,ysc,1 ,rgbf[0],rgbf[13,rgbf[2],1 „text14);
glPrint(blink,xtr+(6OO+3Oo)*fact,ytr+12O*fact)ztr,xsc,yscl1,rgbft03,rgbf[13,rgbf[2],1.,"%d",nr);
glPrint(blink,xtr+(600)*fact,ytr+1 00*fact,ztr,xsc,ysc,1, rgbf [0], rgbfl;i 3. rgbf [23,1 „text15);
glPrlnt(blink,xtr+(600+300)*fac?,ytr+100*fact,ztr,xsc,ysc,1 ,rgbf[03,rgbf[1],rgbf[2],1 .,"%d“,st_mrg);
glEnable(GL_DEPTH_TEST);

if (anti) //Is Anti true?
(

glEnable(GU_LINE„SMOOTH); // If So, Enable Antialiasing

g!Disable(GL_TEXTURE_2D);
} / / end of tstflag
return true;

}
/ / Everything Went OK

WO 2006/076647 PCT/US2006/001347

/*a<Mw dlt guid§§'
/* = = = = = = =

*

7
/

/* = = = = = = . ■-=== =. . = = = = = = */
void DrawDisplay::drawJadder(void)
{

bool biink = false;
int i, ist,ifn, pjlag;
double th_pos;
float tik_maj[3][3] * {{-.3 ,0 ,0 .} ,

{0 ,0 ,0 .} ,
{ -3 ,0 ,0 .} } ;

float tik_min[2][3] = {{-.04,0, 0 .},
{ .0 4 ,0 ,0 .}} ;

float xtr, ytr, ztr, xsc, ysc, fact;
float rgbf[4] = {1,1,1 ,,7};
char text1[80];

gIBindT exture(GL_TEXTURE_2D, texture[0]);
fact = .01;
xtr = -520.0*fact; ytr = -380,0*fact; ztr = -1000.*fact;
xsc = 1 ,f*fact; ysc = 1 .f*fact;

strcpy(text1,"10“);
// glPrint(blink,xtr+480*fact,ytr+600*fact,ztr,xsc,ysc,1, rgbf [0] ,rg bf {1], rg bf [2],. 8,text1);

glPushMatrixQ;
// gtColor4f(1,1,0, .5);

gIColor4f(1,1,1, .7);

glRotatef(state[PHI]*57.3,0.,0.,1.);
glTranslatef(1.9, 0, -10);

p_flag = 0;
if (statejTHETA3*57.3 > 3){

ist = 1;
ifn = 2+ceil(state{THETA]*57.3/10);
p jlag = 1;

}
else if(state[THETA]*57.3 < -3){

ist = -1;
ifn = -2+floor(state[THETA]*57.3/10);
PJiag = 2;

}
if (p jlag — 1){

for(i=ist;i<ifn;i-H-){
glPushMatrix();

/ / if(state[PHI] <=0){
glPushMatrix();
th_pos = -10*(double)sin(state[THETA] - i*10/57.3);
glTranslatef(.15,th_pos, 0 .);
glLineWidth(2);

// glRotatef(i*10,0.,0.,1.);
glBegin(GLJJNES);
glVertex3fv(tik_maj{0]);

34

WO 2006/076647 PCT/US2006/001347

giEndO;

glRotatef(i*10,0.,0 .,1.);
glBegin(GL_UNES);
glVertex3fv(tik_maj[1]);
glVertex3fv(tik_maj[2]);
glEndQ;
gIPopMatrixQ;

giPushMatrixQ;
th_pos = -10*(double)sin(state[THETA} - ((i-1)*10+5)/57.3);
glTranslatef(.15,th_pos, 0 .);
glLlneWidth(l);
gtBegin(G L_LI NES);
g!Vertex3fv(tik_m)n[0]);
g(Vertex3fv(tik_min{1]);
giEnd();
gIPopMatrixQ;

H }
H if(state[PH!l > 0){

giPushMatrixQ;
th_pos = -10*(doub!e)sin(state[THETA] - 1*10/57.3);
giTranslatef(-.15-3.8,th_pos, 0 .);
glLineWidth(2);
glRotatef(-i*10,0.,0.,1.);
glBegln{GL_LINES);
glVertex3fv(tik_maj[0]);
gIV ertex3fv(tikjnaj[1]);
glEnd();

glRotatef(i*10,0.,0.,1.);
glBegin(GUJJNES);
glVertex3fv(tik_maj[1]);
glVertex3fv{tik_maj[2]);
glEnd();
gIPopMatrixQ;

giPushMatrixQ;
th_pos = -lO*(double)sin(state[THETA] - ((i-1)*10+5)/57.3);
gITranslatef(-.15-3.8,th_pos, 0 .);
glUneWidth{1);
glBegin(GL_LINES);
g!Vertex3fv(tik_mintO]);
glVertex3fv(tik_min[1]);
glEndQ;
gIPopMatrixQ;
gIPopMatrixQ;

}
}
if(p_flag == 2){

for(i=ist;i>ifn;i~){
giPushMatrixQ;
glLineWidth(2);

giPushMatrixQ;

35

WO 2006/076647 PCT/US2006/001347

ttupos = -fO*'(double)sIn(state[THETA] - i*10/57.3);
glTranslatef(.15,th_pos, 0 .);
glRotatef(i*10,0.,0.,1.);
glBegin(GL„LI N ES);
glVertex3fv(tik_maj[0]);
glVertsx3fv(tik_maj[1));
glEnd();

glRotatef(i*10,0.,0.,1.);'
glBegin(GL_LlNES);
glVertex3fv(tik_maj[1]);
glVertex3fv(tik_maj[2]);
glEnd();
glPopMatrix();

glPushMatrixQ;
glLineWidth(3);
th_pos = -10*(double)sin(state[THETA] - (i*10+5)/57.3);
gITranslatef(, 1,th_pos, 0.);
glLineWidth(l);
glBegin(GL_LI NES);
glVertex3fv{tik_min{0]);
glVertex3fv(tik_min[1 j);
glEnd();
glPopMatrixQ;

glPushMatrixQ;
th_pos = -10*(double)sin(state[THETA] - i*10/57.3);
gITra n s la te f(-. 15-3.8,th_pos, 0.);
glUne\A/idth(2);
glRotatef(-i*10,0.,0..1.);
glBegin(GL_LlNES);
glVertex3fv(tik_maj[0]);
glVertex3fv{tik_maj[1]);
glEnd();

glRotatef(i*1 Q.0.,0.,1.);
glBegin(GL_LINES);
glVertex3fv(tik_maj[1]);
glVertex3fv(tik_maj[2j);
glEndQ;
glPopMatrixQ;

glPushMatrixQ;
glLineWidth(3);
th_pos a -10*(doubte)sin(state[THETA] - (i*10+5)/57.3);
gtTranslatef(-.1 -3.8,th_pos, 0.);
glLineWidth(l);
glBegin(GL_LINES);
glVertex3fv(tik_min[0]);
glVertex3fv(tik_min[1]);
glEndO;
glPopMatrix();

glPopMatrixQ;
}

glPopMatrixQ;

WO 2006/076647 PCT/US2006/001347

}

void DrawDisplay::draw_roll(void) {
int i, ifn_min,ifn_ma], p_f)ag,num i;
float tik_out[3][3] = {{-.2, -.07, 0.},

{-.2, .07 ,0 .},
{0, 0, 0.}};

float tik_out_rt[3][3] = {[.2, -.05 ,0 .},
{•2, .05, 0 .},
{-■2,0, 0.}};

float tikjn[3][3] = {{,2 , .07, 0 .},

float tik[2][3] = {{-.03, 0, 0 .},

float tik_big[2]{3] „ {{-.2, 0,0 .} ,

gIPushMatrixO;.
glColor4f(1,1,1, .5);
glRotatef(siate[PHl]*57.3,0,0,1);

{.2, -.07, 0 .},
{0, 0, 0.}};

{.03 ,0 , 0.}};

{•2,0,0.}};

p jla g = 0;
if(state[PHI]*57.3 > 3){

ifn_min = 1 +ceil(state[PHI]*57.3/10);
ifn_maj = 1 +ceil(state[PH!]‘'57.3/30);
p jla g = 1;

}
else if(state[PHI]*57.3 < -3){

ifn_min = -1 +f loor(state[PH l]*57.3/10);
ifn_maj = -1 +floor(state[PHI]*57.3/30);
p jla g = 2;

/ / if(cm djlag)num j = 1;
l(if(!cmd Jlag)num J = 2;

n u m j = 2;

for(i=numJ;l>0;i-){
glColor4f(1,1,0, .5);
glPushMatrix();
glLineWidth(2);
glRotatef(180*i, 0,0,1);
gIT ranslatef(-1.5,0,-10);
gIPushMatrixO;
glTranslatef(-.2 ,0 ,0);
glBegin(GL_TRIANGLES);;
glVertex3fv(tik_out_rt[0]);
glVertex3fv(tik_out_rt[1]);
glVertex3fv(tik_out_rt[21);
glEndO;
glPopMatrix();
glPopMatrix();
}

glLineWidth(2);
if(P J lag = 1){

for(i=1 ;i<(ifn_maj-1)*3;i++){

37

WO 2006/076647 PCT/US2006/001347

glColor4f(1,1,0, .5);
glPushMatrix();
glRotatef(-10*i,0,0,1);
gIT ranslatef(1.6,0,-10);
glBegin(GLJJNES);
gIVe rtex3fv(tik[0]);
g!Vertex3fv(tik[1]);
glEnd();
glPopMatrixQ;
}■
for(i=1 ;i<ifn_maj;i++){
gIPushMatrixQ;
glRotatef(-30*i,0,0,1);
gfTranslatef(1,6,0,-10);
glBegin(GLJJNE_LOOP);;
glVertex3fv(tikJn[0]);
glVertex3fv(tik_in[1]);
glVertex3fv[tikJnI2]);
glEnd();
glPopMatrixQ;
}

}

if(p jlag == 2){

for(i=-1 ;i>{ifn_maj+1)*3;i-){
glColor4f(1,1,0, .5);

g(PushMatrix();
glRotatef (-10*1,0,0,1);
gIT ranslatef(-1.6,0,-10);
glBegin(GL_LINES);
giVertex3fv(tikt0]);
glVertex3fv(tik[1]);
glEndQ;
glPopMatrixQ;
}
for(i=-1 ;i>ifn_maj;i—){
gIPushMatrixQ;
glRotatef(-30*i,0,0,1);
gIT ransiatef{-1.6,0,-10);
glBegin(GL_LINE_LOOP);;
glVertex3fv(tik_out[03);
g!Vertex3fv(tik_out{l]);
glVertex3fv(tik_out[2]);
glEndQ;
glPopMatrix();
}

}
glPopMatrixQ;

}
void DrawDisplay::draw_torque(void) {

bool blink;
■float XCTR, YCTR, move_x, move _y, tq_x, rad_1;
float tik[3][3] = {{-.1 ,.1 2 ,0 .} ,

38

WO 2006/076647 PCT/US2006/001347

{0 ,0 ,0 .},
{.1, .12, 0.}};

float ytik[2][3] = {{0, .025, o.},
{0, -.025, 0.}};

float rad = .3;
Inttq, i, r_cnt, r j ;
float xtr, ytr, ztr, xsc, ysc, fact;
float rgbf[4] = {1,1,1 „7};
char text1[80);

glBindTexture{GL_TEXTURE_2D, texturefOJ);
fact = .01;
xtr = -520.0*fact; ytr = -380.0*fact; ztr = -10;
xsc = 1 .f *fact; ysc = 1 .f *fact;
strcpy(text1, TQ");

tq = (int) 100*state[PW]/pwmax;
r_1 = .5*(tq -100);

move_x = 0;
move_y= 0;
XCTR = 2+-move_x;
YCTR = 1.6+move_y;
tq_x = 0;
if(tq < 100 &&tq >= 1Q)tq_x = .1;
if{tq < 10)tq_x = .2;
r_cnt = (50 + r_1);
glColor3f(.80, .80, .80);
blink = false;
if(tq < 5 && tq > 0)blink = true;
glPrint(blink,3.85+2*move_x,2.7+2*move_y,ztr,xsc,ysc,1,rgbf[0l,rgbf[1l,rgbf{2l,rgbf[3l,text1);
glPrint(blink,3.784-2*move_x+tq_x,3.26+2*move_y,ztr,xsc,ysc,1,rgbf[0],rgbf[1],rgbf[2],rgbf[33,K%dn)(int)tq);
glPushMatrix();,
gITranslatef (XCTR,YCTR,-10);
glBegin(GL_UNE_STR5P);
for (i = r_cnt; I > -1; i--)glVertex2f(XCTR + rad*cos(i\02*PI+Pi/2), YCTR - rad*sin(i*.02*Pl+Pi/2));
glEndQ;
glEndO;
glPopMatrlxQ;

gIPushMatrixQ;
gITranslatef(2*XCTR + rad*cos{r_cnt*.02*PI+Pl/2), 2*YCTR - rad*sin(r cnt*.02*PI+PI/2),-10);
glRotatef('(r_cnt*.02*PI+PI/2)*57.3,0.0, 0.0,1.0);
g!Begin(GL_TRIANGLES);

glVertex3fv(tik[0]);
glVertex3fv(tik[1]);
glVertex3fv(tik[2]);

glEnd();
gIPopMatrixQ;

rad_1 - 1.15*rad;
for(i=1 ;i<5;i++){
gIPushMatrixQ;
gIT ranslatef(2*XCTR + rad_1*cos(12.25T.Q2*Pl+P!/2), 2*YCTR - radjPsin(12.25T.02*PI+PI/2),-10Y,
glRotatef(-(12.25*i*.02*PI)*57.3, 0.0, 0.0,1.0);
glBegin(GL_LINE_STRIP);

glVertex3fv(ytik(0]);
glVertex3fv(ytik[1]);

glEnd();
glPopMatrlxQ;

39

WO 2006/076647 PCT/US2006/001347

)

void DrawDisplayr.draw_coil(vold)
{

bool blink;
float XCTR, YCTR, move^x, move_y, tq_x, k1,k2;
float tik[3][2] = {{-,05,0.},

{.05,0.},
{.0,0.}};

float tik_maj[2][2] = {{-.05,0.},
{•05,0,}};

float tik_out_rt[3][2] = {{-.1, -.03},
{-.1, .03},
{•1,0.}};

float tik_putjt[3][2] = {{.1, -.03},
{.1, -03},
{••1,0}};

float rad = .3;
int i, r_cnt, r_1=0;
float ztr, xsc, ysc, fact;
float rgbf[4] = {1,1,1,.7};
char text1[80};
float kx,ky,kz;
float colljim;
float MAX_PULL;

MAX_PULL = max_pull();

// coll_per = 100.0*(COLL_NOW - COLL_MlN)/0,35; DCL and ENB on 7/1/04
It colljim = 10Q.0*(MAX_PULL - COLL_M1^)/0.35;

coILper * 100.0*{COLL_NOW)/0.35;
colljim = 100.0*(MAX_PULL)/0.35;

st_mrg = (int)100.0*(coiijim - coli_per)/coilJim;
nr = (int) state[0]/(OMG_NOM‘ ofct);

glMatrixMode(GL_PROJECTION);
gIPushMatrixO;

glLoadldentity();
gluOrtho2D{0.0, XMAXSCREEN, 0.0, YMAXSCREEN);
glMatrixMode(GL_MODELVIEW);

g!BindTexture(GL_TEXTURE_2D, texture{0});

fact = .01;
ztr = -10;
xsc = 1 .f*fact; ysc = 1 .f*fact;
strcpy(text1, "COL");

kx = .3;
ky = .3;
kz = .3;
move_x = 0;
move_y = 0;

40

WO 2006/076647 PCT/US2006/001347

if(view = CHASEPLANE)XCTR = -1.3;
else if(view == OUT_THE_WINDOW)XCTR = -.65;
YCTR = 0.;
tq_x = 0;
if(coli_per < 100 && coll_per >= 10)tq_x = .1;
if(coll_per < 1Q)tq_x = .2;
tq_x * 0;
r_cnt = (50 + r_1);
gtColor3f(.80, .80, .80);
blink = false;

k1 = .9;
k2 » .02;
glPushMatrix();
glColor4f(1., .3, ,3,1.);
glScalef(kx,ky,kz);
giTrans!atef(XCTR+.3,YCTR-k2*coILper,0);

// collective scale

for(i=0;i<101 ;i=i+100){
glColor3f(.85,1., 1.);
tik[0][0] = -.02;
tik[1][0] = .02;
tik[0][1] = (k2*i);
tik[1][13 = (k2*i);
glPushMatrixO;
glUneWidth(5);
glBegin(GL_LINES);
glVertex3fv(tik[0]);
glVertex3fv(tik[1]);
glEnd();
glPopMatrixQ;
}_

glColor4f{.85,1., 1...1);
gIT rans!atef(-.01,0,0);

tik[0](0} = 0.;
tik[13[03 - 0.;
tik[0)[1] = (k2*0);
tik[1](1] = (k2*100);
glPushMatrix();
g|LineWidth(5);
glBegin(GL_LINES);
glVertex3fv(tik[0]);
glVertex3tv(tik[1]);
glEndQ;
glPopMatrixQ;

gIPopMatrixO;

// draw collective pointer

glPushMatrixO; .
glScalef(kx,ky,kz);
gIT ranslatef(XCTR+.52,YCTR+0,0);
glLineWidth(l);

if(st_mrg < 5){
if(blink_one)glColor4f(1 .,.2,.2,1.);
if(blink_two)g!Color4f(0., 1., 1.,1.);

41

WO 2006/076647 PCT/US2006/001347

glBegin(GL_TRIANGLES);
glVertex3fv(tik_out_lt{Q]);
glVertex3fv(tik_out_lt[1]);
glVertex3fv(tik_outJt[2]);
glEndQ;

else if(st_mrg >= 5){
glColor4f(.8,.8,1 .,.9);
'rf(!cmd_flag)glBegin(GL_TRIANGLES);
if(cmd_f!ag)glBegin{GL_LINE_LOOP);
glVertex3fv(tik_out_lt[0]);
glVertex3fv(tik_out_ll[1]);
giVertex3fv(tik_out_Jt[2]);
glEndO;

}
glPopMatrixQ;

// draw stall limit

gIPushMatrixO;
glSca!ef(kx,ky,kz);
glLineWldth(3);
glC olor4f(1 .3, .3,1.);
glTranslatef(XCTR+.33,YCTR+k2*(collJim - coll per),0):
glBegin(GL_LINES);;
glVertex3fv(tik_maj[0]);
glVertex3fv(tik_maj[1]);
glEndO;
glPopMatrix();

(I draw pitch pointer

g!LineWidth(1);
glColor4f(.8,.8,1.,.9);
gIPushMatrixO;
glScalef(kx,ky,kz);
glTranslatef(XCTR+.77,YCTR+0,0);

glColor4f{.8,.8,1 .,.9);
glBegin(GL_LINE_LOOP);
glVertex3fv(tik_out_rt[0]);
giV ertex3fv{tik_out_rtt1]);
glVertex3fv(tik„out_rt[2]);
glEnd();

glPopMatrix();

/*
glScalef(kx,ky,kz);
gfT ranslatef(XCTR+1.6.YCTR-1 *sin(ALP_CMD),0);

// pitch scale

for(i=-40;i<41 ;i=i+40){
glColor3f(.85,1., 1.);
tik[0][1] = (k2*i);
tikt1][1} = (K2*i);
gIPushMatrixO;

42

WO 2006/076647 PCT/US2006/001347

glLineWidth(l);
glBegin(GL_LINES);
glVertex3fv(tik[0]);
glVertex3fv(tik[1]);
glEndO;
glPopMatrix{);
}

glPopMatrixQ;

glMatrixMode(GLJPROJECTION);
glPopMattix();
glMatrixMode(GL_MODELVIEW);
g!LineWidth(2);

}
float DrawDisplay::max_pull(void) {

double U10, u20, x1, x2, tstx;
double fiO, fg1 ,f, toler, dfdx, trm1, trm2,.trm3,trm4Itrrn5;
double nu_norm1, nu_norm, c2w, lamO, muO, fg2, fi2;
double ot_max_non;

int its,icon,iters;
float MAX_PULL;

ct_max_non = CT_MAX*cfct;

u1Q = cos(ALP_NOW) * ct_max_non;
u20 = sin(ALP_NOW) * ct_max_non;

trm1 = u10*u10 + u20*u20;
trm2 = pow(trm1,.75);

x1 = pO*(state[U]*u20 - state[W3*u1Q)/((state[0]/100.0)*trm2);
x2 = p0*(statelU]*u10 + state[W]*u20)/((state[0]/100.0)*trm2);

tstx = (2*x1 + 3)*(2*x1 + 3) + x2*x2;

if (tstx >= 1)
{

fiO = 1 ;
fi2 = fiO;
toler = 0.001;
its =100;
iters = 0;
icon = 1;
while(icon l= 0 && iterscits)

{
f = pow(fi2,4) + 2*x1*pow(fi2,3) + (x1‘ x1 + X2*x2)*fi2*fi2-1;
dfdx = 4*pow(fi2,3) + 6*x1*fi2*fi2 + 2*(x1*x1 + x2*x2)*fi2;
fi2 = fi2 - f/dfdx;
icon = 1;
if (fabs(fi2-fi0)/fabs(fi2) < toler)!con = 0;
fiO = fi2;

iters = iters +1;
}

43

WO 2006/076647 PCT/US2006/001347

}
if (tsix < 1) fi2 = x1 *(0.373*x1 *x1 + 0.598*x2*x2 -1.991);

nu_norm1 = k0*fi2*sqrt(ct_rnax_non)*(state[0}/100.0)/0,01;
trm1 = -state[W]*ct_max_non + nu_norm1*u10;
trm2 = state[U]*ct_max_non + nu_norm1*u20;
trm3 = 4*((state[ALT]) / hfct + hub);
c2w = trml *trm1/(trm1*trm1 + trm2*trm2);.
fg1 = 1 - rVc2w/(trm3*trm3);

nu_norm = k0*fi2*fg1*sqrt(ct_max_non)*(state[0]/100.0)/0.01;
trml - -state[W]*ct_max_non + nu_norm1*u10;
tmn2 = state[U]*ct_max_non + nu_norm1*u20;
trm3 = 4*((state[ALT]) / hfct + hub);
c2w = trm1*trm1/(trrn1*trrn1 + trm2*trm2);
fg2 = 1 - rVc2w/(trm3*trm3);

lamO as 0.01*(state[U]*u20 - state{W]*u10)/((state[OJ/100.0)*ct_max_non) + k0*fi2*fg2*sqrt(ct_max_non);
muO = 0.01*(state[Ufu10 + state[W]*u20)/((state[0]/100.0)*ct_max_non);

trml = muO;
trm2 = trm1*trm1;
trm3 = (trm2*1.5+1)*(ct_max_non*6/(c!a*sig*cfct));
trm4 = Iam0*1.5*(1 -trm2*0.5);
trm5 = (1-trm2+trm2*trm2*2.25);
MAX_PULL = (trm3 + trm4)/trm5;

return MAX_PULL;
}
void DrawDisplay::draw_a!t(void)
{

bool biink;
float XCTR, YCTR, move_jx, move_y, tq_x, alt, k1 ,k2,ialt,l_cnt;
float tik[3][2] = {{-.005,0.},

{.005, 0.},
{•0,0.}};

float tik_maj[3][2] = {{-.15, 0 .},
{.15,0.},
{•0,0.}};

float tmpt31[2}= {{-.05, 0.},
{•05, 0.},
{•0,0.}};

float tikjout_rt[3]{2] = {{-.2, -'05}t
{-.2, .05},
{•2,0.}};

float tik_outJt[3][2] = {{.2, -.07},
{•2, .0},
{-•2,0}};

float rad = .3;
int i, r_cnt, r_1=0,num;
float ztr, xsc, ysc, fact;
float rgbf{4] = {1,1,1,.7};
char text1[80};

glMatrixMode(GL_PROJECT!ON);

44

WO 2006/076647 PCT/US2006/001347

glPushMatrixQ;

glLoadldentity();
gluOrtho2D(0.0, XMAXSCREEN, 0.0, YMAXSCREEN);
glMatrixMode(GL_MODELVIEW);

gIBindT exture(GL_TEXTURE_2D, texture[0]);
fact = .01;
ztr = -10;
xsc = 1 ,f*fact; ysc = 1 .f* fact;
strcpy(text1, "SPD");

alt = state[ALT]/hfct;

move_x = 0;
move_y = .08;
XCTR = 0.+move_x;
YCTR = .1 +move_y;
tq_x = 0;
if (alt < 100 && alt >= 10)tq_x = .1;
if(alt< 10)tq_x = .2;
tq_x = 0;
r_cnt = (50 + r_1);
glColor3f(.80, .80, .80);
blink = false;
giPushMatrix();
gIT ranslatef(XCIR,YCTR,0.);
ialt = alt_beg;
num = 4;
if(alt < ait_beg){

ialt = 50;
num = 3;

}
if (ait < 50){

ialt = 25;
num = 2;

}
if(alt < 25){

ialt = 12.5;
num = 1;

}
if (alt < 12.5){

ialt = 12.5;
num = 0;

}

k2 = ’.0065/2;
gll_ineWidth(1);
i_cnt = num+1;
for(i=0;i<num;i++){

glColor3f(.85,1., 1.);
tik[0][0] = -.05/i_cnt;
tik[1][0] = .05/i_cnt;
tik[0][1] = (k2*ialt);
tlk[1][1] = (k2*ialt);
ialt = iaft/2;
gIPushMatrixO;
glBegin(GL_LINES);
glVertex2fv(tik(0]);

45

WO 2006/076647 PCT/US2006/001347

glVertex2fv(tikI1]);
fllEndQ;
glPopMatrix();
Lent
}
tik[0][0] = -,05/i_cnt;
tik[1][0] = ,05/i_cnt;
« 1] = 0;
tik[1][1] = 0;
glLineWidth(2);
glColor3f(1., 1 „ .2);
g!Begin(GL_LlNES);
glVertex2fv(tik{0]);
glVertex2fv{tlk[1]);
glEndO;

glPopMatrix();

glMatrixMode(GL_PROJECTION);
glPopMatrixQ;
glMatrixMode(GL_MODELV!EW);

void DrawDisplay::draw_bug(vold)

bool blink;
float XCTR, YCTR, move^x, move_y, tq_x, alt, k1,k2,k4,talt,vspd,hspd;
float kw2;
float bug[6][3] = {{.4, 0., 0 .},

{.26, .13, 0.},
{.13, .13,0,},
{.0,0., 0.},
{-.6,0., 0.},
{-.62,0 .05,0.}};~

float Vtik[2][3] = {{0., .025, 0 .},
{0., -.025, 0.}};

float htik[2][3] = {{-.035, .0, 0 .},
{.035, .0, 0.}};

float utik{2][3] = {{0., 0., 0 .},
{0., 0., 0.}};

float dtik[2][3] = {{.0,0., 0 .},
{.0,0., 0.}};

float tmp[3][3]= {{-.05, 0., 0 .},
{.05,0., 0.},
{.0,0., 0. }};

float tik_out_rt{3]{3] = {{-.2, -.05 ,0 .},
{-.2, .05, 0 .},
{ .2, 0, 0.}};

float tik_outJt[3][3] = {{.2, -.07 ,0 .},
{-2, .0 ,0 .},
{-•2,0,0.}};

float rad = .3;
double p„trm;
int i, r_cnt, r_1=0, ispd;
float ztr, xsc, ysc, fact, sol, tq_s,tq_v;
float xbias, tail,v_inc;
float rgbf[4] = {1,1,1,.7};

46

WO 2006/076647 PCT/US2006/001347

char text1(B0];

tail = .4;

glBindTexture(GL_TEXTURE_2D, textureroi)-
tact = .01;
ztr = -10;
xsc = 1.f*fact; ysc = 1,f*fact;
strcpy(text1, "SPD");

hspd = state[U]/ufct/1.69;
alt = state[ALT]/htct;
vspd = state[W]/wfct;

move_x = 0;
move_y = .08;
XCTR = -.45;
YCTR = .8;
tq_x = 0;
if(alt < 100 && alt >= 10)tq_x = .1;
if (alt < 10)tq_x = .2;
tq_s = 0;
tq_v = 0;
if(vspd < 100 && vspd >= 10)tq_v = .1;
if (vspd < 10)tq_v= .1;
r_cnt = (50 + r_1);
blink = false;
k1=.1;
k2 = .014;
kw2 = 1.*k2;
k4 = .02;
xbias = ,45;
scl = 1.0;
if (alt > aILbeg)talt = alLbeg +1;
if(alt <= alt_beg)talt = alt;

//

glLineWidth(2);
glPushMatrixQ;
gIT ranslatef(XCTR+xbias1 YCTR+k2*tatt,-10,);
glRotatef(state[THETA]*57.3, 0.0, 0.0,1.0);
glScalef(scl, sci, scl);
glColor3f(1., 1., 1.);
if(inform = 0
if(inform == 0
glBegin(GL_L
glVertex3fv(bug[0]);
gIVertex3fv(bug[1]);
glEnd();
glBegin(GL_LINES);
glVertex3fv(bug[1]);
glVertex3fv(bug[2]);
glEndQ;

inform == 4 || inform == 9)glColor3f(1., .6, 0.);
inform = 4) glColor3f(1„ .6,0.);

NES);

glBegin(GL_LINES);
glVertex3fv(bug[2]);
glVertex3fv(bug[3]);
glEndQ;
glBegin(GL_LINES);
glVertex3fv(bug[3]);
glVertex3fv(bug[4]);
glEnd();

47

WO 2006/076647 PCT/US2006/001347

glBegin(GL_LINES);
glVertex3fv(bug[4]);
glVertex3fv(bug[5]);
glEndQ;
gIPopMatrix();

// draw fwd velocity vector

utik[0][0] += bug[0][0];
utik[1][0] += k2*hspd*1.69 + bug[01[0];
glLineWidth(1.5);
glColor4f(.8,.8,1.,1);
glPushMatrix(); .
glT ranslatef (XCTR+xbias,YCTR+k2*talt,-10.);
glRotatef(state[THETA]*57.3, 0.0, 0.0,1.0);
glBegin(GLJJNES);
glVertex3fv(utik[0]);
glVertex3fv(utik[1]);
glEndQ;
glPopMatrix();

// ticks

gIPushMatrixO;
glLineWidth(2);
glT ranslatef (XCTR+xblas,YCTR+k2*talt,-10.);
glRotatef{state|JHET A f 57.3 ,0 .0,0,0 ,1 .0); .
ispd = floor(hspd/10)+1;
for(i=1 ;i<ispd;i-H-){

glColor3f(1.,1.,1.);
vtik[0][0] = k2*i*16.9 + bug[0][0];
vtik[1][0] = k2*i*16.9 + bug[0][01;

glBegin(GL_LINES);
glVertex3fv(vtik[0]);
glVertex3fv(vtik[1]);
glEnd();
}
giPopMatrixQ;
gILineWidth(2);
p_trm = 1.3*k2*hspd*1.69*sin(state{THETAj);
glPrint(blink,XCTR+.9+tq_s +

k2*hspd*1.69,YCTR+.15+k2*talt+p_trm,2tr,xsc,ysc,1,rgbf[0],rgbf[1],rgbft2],rgbf[3],”%d",(int)hspd);

I I print out alitude box

glPushMatrix();
dtik[0][0] = cos(stateUHETA])*bug[4][0];
dtik!0][1] = bug[4][1]- (tai!)*sin(state|THETA));
dtik[1][0] = cos(state[THETA])*bug[4][0];
dtik[1][1] s bug[4][1]- (tail)*sin(state[THETA]);
if (alt > ait_beg)talt = alt_beg + 1 ;
if(alt <= alt_beg)talt = alt;

glPrint(blink,XCTR+.0+tq_x,1.2+k2*talt,ztr,xsc,ysc,1,rgbf[Q],rgbf[1],rgbf[23,rgbf[3],"%du,(int)alt);
glT ranslatef (XCTR+xbias,YCTR+k2*talt,-10.);
glScalef(scI, scl, sci);
glColor4f(.8,.8,1.,.9);
glLineWidth(1.5);

48

WO 2006/076647 PCT/US2006/001347

dtik[1][1] -= kw2*vspd;

// draw sink rate vector

glBegin{GL_LINES);
glVertex3fv(dtik[0]);
glVertex3fv(dtik[1]);
glEnd();
glPopMatrix();

/ / ticks

htik[0][0J += cos(state[TH£TA])*bug[4][0];
htik[1][0] +** cos(state[THETA3)*bug[4][0];
glPushMatrix();
glLineWidth(2);
gIT ranslatef (XCTR+xbias,YCTR+k2*talt,-10.);
v jn c = 5.;
ispd = fioor(vspd/vJnc)+1;
for(i=1;i<ispd;i++){~

glColor4f(1.,1.,l„l.);
htik[0][1] = -kw2*i*vJnc+cos(state[THETA])*bug[43[1]-taii*sin(stateITHETA3);
_™k[1][1] = -kw2*i*vjnc+cos(state[THETA])*bug[4][1]-taiI*sin(state|THETA3);

glBegin(GLJJNES);
giVertex3fv(htik[0]);
glVertex3fv(htik[1]);
glEnd();
>
glPopMatrix();
giLineWidth(l);

void DrawDispiay::draw_rpm(void) {

bool biink;
float XCTR, YCTR, move_x, move_y, rpm_x, rad_1 ,tait,k2,ait;
float tik[3][3] = {{-.07, .1 ,0 .} ,

{0, 0, 0.}, .
{.07, .1, 0.}};

float ytik{23{3] = {{0, .02,0 .},
{0, -.02, 0.}};

float rad = .3;
int i, r_cnt, r_1,r_lim;
float xtr, ytr, ztr, xsc, ysc, fact;
float rgbf{4] = {1.,1.,1,.7};
char text1[80];

fact = .01 ;
xtr = -520.0*fact; ytr = -380.0*fact; ztr = -10;
xsc = 1 .Pfact; ysc = 1 .f*fact;
strcpy(text1, "RPM");

r_1 = 1 .67 *(n r-100);
k2 = .013;
alt = state[ALT]/hfct;
move_x = 0;
rriove_y = .07;
if(alt > alt_beg)tait = alt_beg + 1;
if(alt <= ait_beg)ta!t = alt;
XCTR = .4 - .2*sin(state{THETA]);

49

WO 2006/076647 PCT/US2006/001347

YCTR = k2*talt+1.5 + .2*sin(state[THETA]);
rpm_x = 0;
if(nr < 100 &&. nr >= 10)rpm_x = ,1;
if(nr < 10)rpm_x = .2;

glColor3f(1.,1.,1.);
blink = false;
r_cnt = (50 + r_1);
if(nr < 90 || nr > 110)blink = true;
if(alt < 30.)blink = false;
glPrint(blink,XCTR+rpm- /. .2 ,YCTR+.1 ,ztr,xsc,ysc,1 .rgbflOJ.rgbffl],rgbf[2],rgbf[3],"%du,nr);
gIPushMatrixQ;
gIT ranslatef (0,0,-10.);
glLineWidth(2);
glBegin(GL_LINE_STRIP);
for (i = r_cnt; i > -1; i--)glVertex2f(XCTR + rad*cos(i*.02*PI+P!/2), YCTR - rad*sin(i*.02*PI+PI/2)V
glEnd();
gIPopMatrixO;

rad_1 = 1.15*rad;
r jim = 4;
if(nr > 99)rjim = 5;
if(nr> 109)rjim = 6;
for(i=1;i<r_iim;i++){
gIPushMatrixO;
gfTransiatef(XCTR + rad„1*cos(16.67*i*.02*PI+PI/2), YCTR
glRotatef(-(16.67*i*.02*PI)*57.3,0.0, 0.0, 1.0);
glBegin(GLJJNES);

glVertex3fv(ytik[0]);
glVertex3fv(jrtik[1]);

9'End();
gIPopMatrixQ;
}

rad _1 *sin(16.67*i*.02*PI+Pi/2),-10);

}

gIPushMatrixO;
glTrans!atef(XCTR + rad*cos(r cnt*.02*PI+PI/2), YCTR
glRotatef(-(r_cnf.02*PI+PI/2)*57.3,0.0, 0 .0, 1.0);
glColor3f(1 .,1 .,1.);
glBegin(GL_TR!ANGLES);

glVertex3fv(tik[0]);
glVertex3fv(tik[1]);
glVertex3fv(tik[21);

giEnd();
glPopMatrix();

rad*sin(r_cnt*.02*PI+PI/2),-10);

void DrawDisplay::draw_ball(void) {
float XCTR, YCTR, move_x, move_y, rpm_x;
float vertik[2](3] = {{0, .15 ,0 .},

float rad = .3;
int i;
float ztr, xsc, ysc, fact;
float rgbf[4] = {1,1,1,.7);
char textl [80];

{0, -.15, 0.}};

gIBindT exture(GL_TEXTURE_2D, textu re[0]);
fact = .01;
ztr = -10;
xsc = 1 ,f*fact; ysc = 1 .f*fact;

50

"s
'*

WO 2006/076647 PCT/US2006/001347

strcpy(text1, "RPM");

move_x = 0;
move_y = 0;
XCTR = 0.+move_x;
YCTR = -.3+move_y;
rpm_x = 0;

glColor3f(.80, .80, .80);

glPushMatrix();
glTranslatef(XCTR, YCTR.-10);
glBegin(GL_LINE_LOOP);
for (i = 1; i <34; i++)glVertex2f(.08*cos(i*.06*Pl),.a8*sin(i*.06*Pl));
glEnd();
g(PopMatrix();

giPushMatrixQ;
gIT ransIatef(XCTR, YCTR.-10);
glBegin(GL_LINES);
glVertex3fv(vertik[0]);
glVertex3fv(vertik[1]);
glEnd();
glPopMatrixQ;

-------------------------------7
draw FP shadow */

/*----------------------------*/

void DrawDisplay.:draw_shad(void) {
int i, j, cnt;
float w[4][3];
double x_00, x_10, y_00, y_01, z_00, z_01, z_10, z_11;
double h_r, h j ;
double x_proj, y_proj, z_proj;
double tjnc,psi_up;
double trm1,trm2,trm3;
double x_psi, y_psi, psijnc,ux_rel,uy_rel,vx_rel,vy_rel;
double sep, cpsi, spsi, cphi,sphi,ctheta,stheta;
int L00_00JLOOJOO,LOO_10,j_00_10,i_00_11 ,j_00_11 ,i 00 01 ,j_00_01 •
int L 10_00,L 1 0_.00.L 10_10,J_10_ 10,1 J 0_11 ,j_10_ 11 ,L 1oZol J 10_01
int L11_00,i_i 1„00,L11_10,j_j 1_10.L11_11 ,j_11_11 ,L11_01 ,L11_01;
int LOl_00,j_01_00,i_01_10rj_01_10lL01_11,j_01_11,1_01_01 ,j_01__01;
double bx_00_00,bx_00_ 10,by_00_00,by_00_01 ,bx_10_00,bx_10_10,by_10_00,by 10_01;
double bx_11 _00,bx_11 _10,by_11_00,by_11 _01 ,bx_01 _00,bx_01 _10,by_01 _00,byl01 _01;

sep = .5;

spsi s* sin(state[PSIj);
cpsi = cos(state[PSI]);
sphi a sin(state[PHI]);
cphi a cos(state[PHIJ);
stheta = sin(state[THETA]);
ctheta = cos(state{THETA]);

X_proj = state[NORTH]+(state[U]*cpsi+state[V]*spsi)*TTGO;
y_proj = statefEAST] +(state[U]*spsi+state[V]*cpsi)*TTGO;
x_proj = state[NORTH];
yiproj = statefEAST];

51

WO 2006/076647 PCT/US2006/001347

z_proj = state[DOWN];
psi_up = state[PSI];

t jn c = .01;

trm1 = state[U]*t_inc;
trm2 = state[V]*t_inc;
trm3 = state[W]*t_inc;

psijnc = 0;

ux_rel = trm1*cos(psiJnc/2);
uy_rel= trm1 *sin(psiJnc/2);

VK_reI = -trm2*sin(psiJnc/2);
vy-rel = trm2*cos(psi_inc/2);

for(cnt =0;cnt< f!oor(TTGO/tJnc);cnt ++){

x_psi = (ux_re!+vx_rel)*cos(psi_up) + (uy_rel+vy_rel)*sin(psi_up);
y_psi = (ux_rel+vx_rel)*sin(psi_up) + (uy_rel+vy rel)*cos(psi up);
x_proj += x_psi;
y_proj += y_psi;
z_pro{+= trm3;

i * fIoor(x_proj/FPB);
j = floor(y_proj/FPB);
psi_up += psijnc;
if(psi_up >= 2*PI)psi_up = 0;
if(psi_up <= 0)psi_up = 2*Pi;

}

x_00 « x_proj - TW/2.;
x_10 = x_proj + TW/2.;
y_00 = y_proj - TW/2.;
y_01 = y_proj + TW/2.;

L00_00 = floor(x_00/FPB);
j_00_00 = floor(y_00/FPB);
L00_10 = i_00_00 + 1;
j_00_10 = j_00_00;
i_0O_11 = l_00_10;
j_00_11 = j_00_00 +1 ;
i_00_O1 = L00_00;
j_00_01 =]_00_11;

L10_00 = floor(x_10/FPB);
j_10_00 = j_00_00;
L10_10 = L10_00 + 1;
)J0_10 = j_10_00;
L10_11 = i_10_10;
jjO _11 =j_10_00 + 1;
i_10_01 = i_10_00;
jJ0_01 =L10_11;

U 1 _ 0 0 = i_10_00;
U 1_00 = floor(y_01/FPB);
L11_10 = i_11_00 + 1;

52

WO 2006/076647 PCT/US2006/001347

j_11_10 = j_11_00;
i_11_11 =
j_11__11 = j_11_00 + 1;
i_11 01 = i 11_00;
L 11-01 = L 1 1 J 1 ;

L01_oo = i 00 00;
i_01_00 = j_11_00;
L01_10 = 1_01_00 + 1;
i_ o i_ io = j_01_00;
i_01_11 = L01_10;
j_ o i_ i i = j_01_00 +1;
i_01_01 = i_or 00;
L01_01 a L .01J1;

bx_00_00 = i_00_00*FPB
bx_00_10 = i 00 10*FPB
by_oo_oo =]_00_00*FPB
by_oo_oi = j_00_01*FPB

bx_10_00 = i_10_00*FPB
bx_10_10 = i_10_10*FPB
by_10_00 = j-10_00*FPB
by_10_oi = J_10_01*FPB

bx_11_00 - U1_Q0*FPB
b x_ H _ lo = L11_10*FPB
by_11 00 = j_11_00*FPB
by_11_01 = j_11_01 *FPB

bx_01_00 = i_01_00*FPB
bx_01_10 = i_01_10*FPB
by_01_00 =L01_00*FPB
by_oi_oi = j_01_01*FPB

h j - interp(bx_00_00, bx_00_10, x_00, gnd[LOO_O0][j_OO_OO], gnd[i_00_10][LOO_00]);
h- [r inteirP(bf;<-00- 00. bx_00_10, x_00, gnd[LQ°_OO]0_O°_O1], gndp 00 10][j 00 Oil);
z_00 = interp(by_00_00, by_00_01, y_00, h j , h_r); ~ “

hJ = interp(bx_10_00, bx_10_10, x_10, gnd[i_10_00][j_10_00], gnd[!_10_10][j_10 00]);
h~r ~ '"^(bxJ^O O , bx_10- 10, x_1°, gnd[i_10_QO]0_1 ° - ° 1], gnd[i_10 10][j 10 01]);
z_10 = interp(by_10_00, by_10_01, y_00, h j , h„r); “ ~

h_l = in{erp(bx_11 00, bx_11_10, x_10, gndp_11_O0][]_11_OO], gnd[L11_l0][i_11_00]);
h- r 7 interp(bx_.11_0°, bx_11_1°f x_1o, gnd[i_11 _00][j_11_01], gndp 11 10][j 11 01]);
Z—11 = inierp(by_11„00, by_11_01, y_01, h j , h_r); ~ " ”

h j = interp(bx_01 00, bx_01_10, x_00, gnd[i_O1_OO]0_O1_OO], gnd[5_01_10]D‘_01 _00]);
h- 1 7 in.terP(bX-°1-00> bx_01_10, x_00, gnd[L01_0°][l_01_01], gnd[i 01 10]Q 01 01]);
z_01 = mterp(by_01_00, by_01_01, y_oi, h j , h_r); ~ “ *

w[0][0] = x_00;
w[0][1] = y_00;
Wl0]t2] = z_00-lyft;

w[1][0] =x_10;
w[1][1] = y_00;
w[1][2] = z_10-lyft;

W[2]t0] = x_l0;

53

WO 2006/076647 PCT/US2006/001347

w[2][1] = y_01;
w[2][2] = z_11 - lyft;

w[3][0] = x_00;
w[3J[1] = y_01;
w[3][2] = z_01 - lyft;

// glColor3f(95., .3, 0);
glColor3f(.85,1,1);

glBegin(GLJJNES);
{ '

g)Vertex3fv(w[0]);
glVertex3fv(w[1]);

}
glEndO;

glBegin(GLJJNES);
{

}

glVertex3fv(w[1]);
glVertex3fv(w[2});

gIEnd();

glBegin(GL_LINES);
{

glVerlex3fv(w[2]);
glVertex3fv(w[3j);

glEndO;

glBegin(GL_UNES)’,
{

}

glVertex31v(w[3]);
glVertex3fv(w[0]);

glEndO;

}
r ---------------------- «■/
I* draw FPVector impact point */
/*---------------------------*/

void DrawDisplay::drawJmp(void) {
int i, j, cnt;
double x_proj, y_proj, z_proj;
double tjn c;
double psi_up;
double trm1,trm2,trm3;
double xjdsi, y_psi, h_diff,psi_inc,ux_rel,uy_rel,vx_rel,vy_rel;
int brake;

x_proj = state[NORTH];
y_proj = state[EAST];
z_proj = statejboWN];
psi_up = state[PSI];

Line = .01;

54

WO 2006/076647 PCT/US2006/001347

brake = 0;

trm1 = state(U]*Unc;
trm2 = statejyptjnc;
trm3 = state[W]*tJnc;

psijnc = 0;

ux_rel= trm1*cos(psiJnc/2);
uy_rel = trm1*sin(psiJnc/2);

vx_rel = -trm2*s?n(psiJnc/2);
vy_rel = trm2*cos(psi_inc/2);

h_diff = 1000;

for(cnt =0;cnt< floor(20/tjnc);cnt ++){

x_psi = (ux_rel+vx_rel)*c6s(psi_up) + (uy_rel+vy_ret)*sin(psl_up);
y_psi = (ux_re!+vx_rel)*sin(psi_up) + (uy_rel+vy_rel)*cos(psi_up);
x_proj += x_psl;
y_proj += y_psi;
z_proj += trm3;

i = {loor(x_proj/FPB);
j = floor(y_proj/FPB);
h_diff = -(z_proj - check_lmp_ht(x_proj,y_proj,i,j));
if(h_dif{ < 0){

brake = 1;
goto a;

}
psi_up += psijnc;
if(psi_up >= 2*Pl)psi_up = 0;
if(psi_up <= 0)psi_up = 2*PI;

}
a: if(brake)drawJoot(x_pi'oj,y_proj,psLup);

}

I* draw a large rectangle to make the horizon 7
/* (better would be to do this in an ortho projection) 7
/*-- -7

void DrawDisplayr.draw_ground_plane(void) {

I* turn off the zbuffer while we draw the ground plane 7
g!Enable(GL_TEXTURE_2D);
gIBindT exture{GL_TEXTURE_2D, texture[3]);

glPushMatrixQ;
glColor3f(.7,1.,.7);

g!Begin(GL_POLYGON);
{

giTexCoord2f(O.Of, Q.0f);g!Vertex3f(-50000., -50000., 20.0);
glTexCoord2f(0.fr 1.0f);giVertex3f(50000„ -50000., 20.0);

55

WO 2006/076647 PCT/US2006/001347

glTexCoord2f(1.f, 1 .f);g(Vertex3f(50000., 50000., 20.0);
glTexCoord2f(1 .Of, 0.f);glVertex3f(-50000., 50000., 20.0);

}
glEnd();
gIPopWlatrixQ;

II glEnable(GL_DEPTH_TEST);
glDisable(GU_TEXTURE_2D);

void DrawDispiay.:draw_plane(void)

float kf = 3.28;
GLfloat LightPosition[4]; / / Light Position

glPushMatrix();

g!Translatef (state[NORTH], state[EASTl, state[DOWN]);
LightPosition[0]=state[NORTH];
LightPosition[1]=state[EAST|;
LightPosition[2]=state[DOWN];
Li g htPos it ion[3]=1;

glRotatef(state[PSI]*57.3,0.0, 0.0,1.0);
glRotatef(state[THETAJ*57.3,0 .0 ,1 .0 ,0.0);
glRotatef(state[PHI]*57.3,1.0, 0 .0 ,0.0);
glEnable(GL_TEXTURE_2D);
gIBindT exture(GL_TEXTURE_2D, texture[1]);
glPushMatrix();
gIT ranslatef (-.5,0.,0.);
draw_rotor();
g!PopMatrix();

// transmission casing
glScalef(kf, kf, kf);

glBegin(GL_TR)ANGLE_STR!P);

gITexCoord2f{O.Of, 0.0f);glVertex3f(4.419, -0, -.789); //I
glTexCoord2f(0.f, 1 .Of);giVertex3f(3.782, -.4, -.704); //6
giTexCoord2f(1 .f, 0.0f);glVertex3f(3.642, -.1,-1.347); II2
giTexCoord2f(0.f, O.0f);glVertex3f(3.160, -.456, -.777); (l5
glTexCoord2f(1 .f, -1 .f);glVertex3f(3.096, -.2, -1.408); //3
giTexCoord2f(O.Of, -1 .f);glVertex3f(2.79,-.492,-1.006); //4
giTexCoord2f(0.0f, 0.0f);glVertex3f(2.355, -.2, -1.978); //42
glTexCoord2f(0.f, 1.0f);glVertex3f(2.016, -.590, -1.128); //43

glEnd();

glBegin(GL_QUAD_STRIP);
{

giTexCoord2f(-1 .f, 0.0f);giVertex3f(1.622,-.2,-2.063); //41
giTexCoord2f(1 .Of, 0.0f);glVertex3f(2.355, -.2, -1.978); //42
giT exCoord2f(0.f, 0.0f);glVertex3f(1.853,-.436,-1.359); //44
giTexCoord2f(0.f, 1.0f);glVertex3f(2.016, -.590, -1.128); //43
giT exCoord2f(1 .f, -1.0f);glVertex3f(1.72,-.578,-1.183); //45
glTexCoord2f(0.0f, 1 ,f);g|Vertex3f(1.761 ,-.425,-.849); //5b
giT exCoord2f (O.Of, -1 .f) ;glVertex3f(.725,-.501 ,-1.345); //46

56

WO 2006/076647 PCT/US2006/001347

glTexCoord2f(1 .f, -1.0f);glVertex3f(.421 ,-.823,-.897); //53b
gIT exCoord2f (1 .f, 0.0i);glVertex3f (.375,-.436,-1.454); //49
glT exCoord2f (1 .Of, -1 .f);glVertex3f(-1.047,-.713,-.81); //32b
giTexCoord2f (O.Of, -1 .f);glVertex3f (-1.993,-.501 ,-1.195); //34b
gUexCoord2f(1 .f, -1 .f);glVert8x3f(-2.549,-.333,-.72); //31
glTexCoord2f(O.Of, -1 ,f);glVertex3f(-1.275,-.2,-1.808); //36
g!T exCoord2f (1 .f, 1 .f);glVertex3f(-2.623,-.2,-1.189); //33

glEnd();

giBegin(GL_QUAD_STRIP);

g!TexCQord2f(0.f, 1.0f);glVertex3f(1.853,-.436,-1.359); //44
g(T exCoord2f (1 .f, 1.0f);glVertex3f(1.72,-.578,-1.183); II45
g(TexCoord2f(1 .f, 0.0f);glVertex3f(1.622,-.2,-2.063); //41
giTexCoord2f(0.0f, -1 .f);glVertex3f(.725,-.501 ,-1.345); //46
glT exCoord2f(1 .f, -1 .f);g!Vertex3f(.814,-.2,-2.063); //40
glT exCoord2f(1 .f, 0.0f);gIVeirtex3f(.668,-.467,-1.633); //47
glTexCoord2f(1 .f, 1,0f);g[Vertex3f(.389,-.2,-2.366); //39
glT exCoord2f(1 .f, 0.0f);glVertex3f(-.293,-.272,-1.931); //50b
}

glEndQ;

glBegin(GL_TRIANGLE_FAN);
{

girexCoord2f(1.f, 0.0f);glVertex3f(-.293,-.272,-1.931); //50b
giTexCoord2f(1.f, 1.0f);glVertex3f(.389,-.2,-2.366); //39
glTexCoord2f(0.0f, -1 .f);glVertex3f(0.,-.2,-2.338); //39b
glTexCoord2f(1 .f, 0.0f);glVertex3f(-.6192,-.2,-2.293); II38
giTexCoord2f(1 .f, -1 .f);glVertex3f(-1.093,-.2,-2.16); 1137
giTexCoord2f(O.Of, -1 .f);glVertex3f(-1.275,-.2,-1.808); //36

glEnd();

glBegin(GL_TRIANGLE_FAN);
{

glTexCoord2f(1 .f, 0.0f);glVertex3f(-.47,-.46,-1.685); 1150
glTexCoord2f(0.0f, -1 .f);glVertex3f(-1.275,-.2,-1.808); //36
glTexCoord2f(0.0f, 1 .f);glVertex3f(-1.993.-.501 ,-1.195);//34b
glTexCoord2f(1 .f, 0.0f);glVertex3f(.375,-.436,-1.454); //49
gtTexCoord2f(1.f, 1.0f);glVertex3f (.668,-.467,-1.633); //47
glTexCoord2f(1 ,f, 0.0f);glVertex3f(-,293,-.272,-1.931); //50b
glT exCoord2f (O.Of, -1 .f);glVertex3f(-1.275,-.2,-1.808); 1/3 6

glEndO;

glBegin(GL_TRlANGLES);
{

giTexCoord2f(1 .f, 0.0f);glVertex3f(.375,-.436,-1.454); H49
glTexCoord2f(1 .f, 0.0f);glVertex3f(.668,-.467,-1.633); //47
giTexCoord2f(0,0f, -1 .f);glVertex3f(.725,-.501 ,-1.345); //46

glEndO;

glBegin(GL_TRIANGLE_FAN);

glTexCoord2f(0.f, 1.0f);giVertex3f(3.654,-.0,-,4); //7b
g!TexCoord2f(0.0f, 0.0f);glVertex3f(4.419, -.0, -.789); //1
giTexCoord2f(0.f, 1.0f);giVertex3f(3.782, -.4, -.704); l/Q

57

WO 2006/076647 PCT/US2006/001347

glTexCoord2f(0.f, 0.0f);glVertex3f(3.l60, -.456, -.777); US
giTexCoord2f(O.Of, -1.f);glVertex3f(2.79,-.492,-1.006); HA
gIT exCoord2f (O.f, 1.0f);glVertex3f (2.016, -.590, -1.128); //43
gITexCoord2f(O.Of, -1 .f);glVertex3f(1.761 ,-.425,-.849); //5b
glTexCoord2f(1.f, 0.0f);glVertex3f(1.53,-.0,-.28); (19
glTexCoord2f{0.f, -1,0f);glVertex3f(1.785,-.0,-.134); //8
grr exCoord2f(0.f, 1.0f);glVertex3f(3.557,-.0,-. 109); H7

glEnd();

giBegin(GL_QUAD_STRIP);

glTexCoord2f(1 .f, 0.0f);glVertex3f(1.53,-.0,-.28); //9
giTexCoord2f(O.Of, -1 .f);glVertex3f(1.761 ,-.425,-.849); //5b
g!TexCoord2f(1 .f, -1 .f);glVertex3f(.218,-.0,-.243); //12
glTexCoord2f(1 .f, 0.0f);glVertex3f(.421 ,-.823,-.897); //53b
glTexCoord2f(0.0f, 1 ,f);glVertex3f(-1.41 ,-0,-.182); //14
gITexCoord2f(0.0f, -1 .f);glVertex3f(-1.047,-.713,-.81); //32b
glTexCoord2f(1 .f, 1 .f);glVertex3f(-3.86l ,-.0,-.206); //15
grrexCoord2f(1 .f, -1 .f);glVertex3f (-2.549,-.333,-.72); //31

gIEnd();

glBegin(GL_TRIANGLE„FAN);

gIT exCoord2f (O.Of, -1.f);glVertex3f(-4.99,-.15,-.631); //28
gITexCoord2f(1 .f, -1 .f);gtVertex3f(-3.861 ,-.0,-.206); //15
gIT exCoord2f (1 .f, 1 .f);glVertex3f(-2.549,-.333,-.72); //31
gITexCoord2f(1 .f, -1 .f);glVertex3f(-2.623,-.0,-1.189); //33
gIT exCoord2f(1 .f, 1.0f);glVertex3f(-4.48,-.0,-1.007); //26
glTexCoord2f(1 .f, 0.0f);glVertex3f(-5.184,-.0,-1.529); //25
gIT exCoo"rd2f(1.1, -1 .f);glVertex3f (-6.083,-.0,-2.451); //24
gIT exCoord2f (O.Of, -1 .f);glVettex3f (-6.71 ,-.0,-2.342); //23
gITexCoord2f(1 .f, 0,0f);glVertex3f(-6.289,-.0,-1.396); //21
gfT exCoord2f (O.f, 1 .Of);gl Vertex3f(-6.508,-.0,-1.03); //20
giTexCoord2f(0.0f, O.0f);glVertex3f(-6.7O,-.O,-.558); //19
giTexCoord2f(0.0f, -1.f);glVertex3f(-6.483,-.0,-.328); //18
grTexCoord2f(-1.f, 1.0f);glVertex3f(-5.804,-.0,-.012); //17
glTexCoord2f(1 .f, 0.0f);glVertex3f(-5.,-.0,-.036); //16
gITexCoord2f(1 .f, -1 .f);glVertex3f(-3.861 ,-0,-.206); //15

gtEnd();

// Right Side

glBegin(GL_TRIANGLE_STRIP);
{

glTexCoord2f(0.0f, 0.0f);glVertex3f(4.419, .0, -.789); //1
gITexCoord2f(0.f, 1.0f);glVertex3f(3.782, .4, -.704); //6
gITexCoord2f(1 .f, 0.0f);glVertex3f(3.642, ,1,-1.347); //2
glTexCoord2f(0.f, 0.0f);giVertex3f(3.160, .456, -.777); /IS
gITexCoord2f(1 .f, -1 .f);giVertex3f(3.096, .15, -1.408); //3
gIT exCoord2f(0.0f, -1 .f);glVertex3f(2.79,.492,-1.006); //4
gITexCoord2f(0.0f, 0.0f);giVertex3f(2.355, .235, -1.978); H42
glTexCoord2f(0.f, 1.0f);glVertex3f(2.016, .590, -1.128);//43

glEnd();

glBegin(GL_QUAD_STRIP);

58

WO 2006/076647 PCT/US2006/001347

gIT exCoord2f(1.{, 0.0f);glVertex3f (1.622,.2,-2.063); //41
gITexCoord2f(0.0f, O.Of);glVertex3{(2.355, .2, -1.978); //42
gIT exCoord2f(0.f, 1.0f);glVertex3f (1.853,.436,-1'.359); //44
gITexCoord2f(0.f, -1.0f);glVertex3f(2.016, .590, -1.128); //43
gIT exCoord2f(1.{, 1 .Of);glVertex3f(1.72,.578,-1.183); //45
gIT exCoord2f (O.Of, 1 ,f);glVertex3f(1.761 ,.425,-.849); //5b
gUexCoord2f(0.0f, -1 .f);glVertex3f(.725,.501 ,-1.345); //46
gIT exCoord2f(1 ,f, 0.0f);glVertex3f(.421 ,.823,-.897); //53b
gITexCoord2f(-1 .f, O.Of);glVertex3f(.375t.436,-1.454); //49
gITexCoord2f(0.0f, -1.f);glVertex3f(-1.047,.713,-.81); //32b
glTexCoord2f(0.0f, 1.f);glVertex3f(-1.993,.501,-1.195); //34b
glTexCoord2f(1.f, -1.f);glVertex3f{-2.549,.333,-.72); //31
gIT exCoord2f(0.0f, 0.f);glVertex3f (-1.275,.2,-1.808); //36
gIT exCoord2f(1 .f, -1 ,f);glVertex3f (-2.623, .2,-1.189); //33
}

glEnd();

glBegin(GL_QUAD_STRIP);
{

g!TexCoord2f (O.f, 1.0f);g!Vertex3f (1.853,.436,-1.359); 7/44
g!T exCoord2f(1.{, 1.0f);gtVertex3f(1.72,.578,-1.183); //45
gtrexCoord2f(1 .f, O.0f);g)Vertex3f(1.622,-2,-2.063); 7/41
g!T exCoord2f(0.0f, -1 .f);glVertex3f(.725,.501 ,-1.345); 7/46
gIT exCoord2f (1 .f, -1 .f);glVertex3f (.814,.2,-2.063); 7/40
giT exCoord2f (1 .f, 0.0f);glVertex3f(.668,.467,-1.633); 7/47
gIT exCoord2f(1 .f, 1.0f);glVertex3f(.389,.2,-2.366); //39
giT exCoord2f(1 .f, 0.0f);glVertex3f(-.293,.272,-1.931); //50b

glEnd();

glBegin(GL_TRIANGLE_FAN);

glTexCoord2f(1 .f, 0.0f);glVertex3f(-.293,.272,-1.931); //50b
glTexCoord2f(1.f, 1.0f);giVertex3f(.389,.2,-2.366); 7/39
giTexCoord2f(0.0f, -1 .f);glVertex3f(0.,.2,-2.338); //39b
giT exCoord2f(1 .f, 0.0f);glVertex3f(-.6192,-2,-2.293); 7/38
giTexCoord2f(1 ,f, -1 .f);glVertex3f(-1.093,.2,-2.16); //37
giTexCoord2f(O.Of, -1 .f);glVertex3f(-1.275,.2,-1.808); //36

}
glEnd();

glBegin(GL_TRIANGLE_FAN);
(

giTexCoord2f(1 .f, 0.0f);glVertex3f(-.47,.46,-1.685); //50
giT exCoord2f(0.0f, 1 ,f);glVertex3f(-1.275,.2,-1.808); //36
giTexCoord2f(0.0f, -1 .f);glVertex3f(-1.993,.501 ,-1.195);//34b
glTexCoord2f(1 .f, -1.0f);glVertex3f(.375,.436,-1.454); //49
giTexCoord2f(1 .f, 0.0f);glVertex3f(.668,.467,-1.633); //47
giT exCoord2f(1 .f, 1.0f);glVertex3f(-.293,.272,-1.931); //50b
giTexCoord2f(0.0f, -1 .f);glVertex3f(-1.275,.2,-1.808); //36

glEnd();

glBegin(GL_TRIANGLES);
{

glTexCoord2f(1 ,f, 0.0f);giVertex3f(.375,.436,-1.454); //49
giTexCoord2f(1 .f, -1.0f);giVertex3f(.668,.467,-1.633); //47
giTexCoord2f(0.0f, -1 .f);giVert6x3f(.725,.501 ,-1.345); //46

glEndQ;

59

WO 2006/076647 PCT/US2006/001347

glBegin(GL_TRIANGLE_FAN);
{

glT exCoord2f(0.f, 1.0f);g!Vertex3f(3.654,0,-.4); //7b
glTexCoord2f(0.0f, 0.0f);glVertex3f(4.419, 0., -.789); //1
glTexCoord2f(0.f, 1 .Of);glVertex3f(3.782, .4, -.704); //6
glTexCoord2f(0.f, 0.0f);glVertex3f(3.160, .456, -.777); //5
giT exCoord2f (O.Of, -1 .f);glVertex3f(2.79,.492,-1.006); //4
giTexGoord2f(Q.f, 1.0f);glVertex3f(2.016, .590, -1.128);//43
glTexCoord2f(0.0f, -1 .f);glVertex3f(1.761 ,.425,-.849); //5b
glTexCoord2f(1 .f, 0.0f);glVertex3f(1.53,.0,-.28); 119
glTexCoord2f(0.f, 1,0f);glVertex3f(1.785,0,-.134); //8
gtT exCoord2f (O.f, 0.0f);glVertex3f (3.557,0,-.109); 117

glEnd();

g(Begin(GL_QUAD_STR!P);
{

glT exCoord2f(1 .f, 0.0f);glVertex3f(1.53,0,-.28); 119
glTexCoord2f(0.0f, -1 ,f);glVertex3f(1.761 ,.425,-.849); //5b
gtTexGoord2f(1.f, -1.f);g!Vertex3f(.218,0,-.243); //12
grrexCoord2f(1 .f, 0.0f);glVertex3f(.421 ,.823,-.897); //53b
glTexCoord2f(O.Of, -1 .f);glVertex3f(-1.41,0,-.182); //1 4
glT exCoord2f (O.Of, 1 .f);glVertex3f(-1.047,.713,-.81); //32b
glT exCoord2f(1 .f, -1 .f);glVertex3f(-3.861,0,-.206); //15
glTexCoord2f(1 .f, 0.f);glVertex3f(-2.549,.333,-.72); //31

glEnd();

glBegin(GL_TRIANGLE_FAN);

glTexCoord2f(O.Of, -1 .f);glV6rtex3f(-4.99,.15,-.631); //28
glTexCoord2f(1 .f, -1 .f);glVertex3f (-3.861 ,.0,-.206); //15
glTexCoord2f(1 .f, 1 .f);g!Vertex3f(-2.549,.333,-.72); //31
glTexCoord2f(1.f,-1.f);glVertex3f(-2.623,0 ,-1.189); //33
glT exCoord2f(1 .f, 1,0f);glVertex3f (-4.48, .0,-1.007); //26
glTexCoord2f(1 .f, O.Of);glVertex3f (-5.184,.0,-1.529); //25
glTexCoord2f(1 .f, -1 .f);g!Vertex3f(-6.083,.0,-2.451); //24
giTexCoord2f(0.0f, -1 .f);glVertex3f(-6.71 ,.0,-2.342); //23
glT exCoord2f(1 .f, O.0f);glVertex3f(-6.289,.0,-1.396); //21
glTexCoord2f(0.f, 1.0f);glVertex3f(-6.508,.0,-1.03); //20
glTexCoord2f(0.0f, 0.0f);glVertex3f(-6.70,.0 ,-.558); //19
glTexCoord2f(O.Of, -1 .f);glVertex3f(-6.483,.0,-.328); //18
glTexCoord2f(1.f, 1.0f);glVertex3f(-5.804,.0,-.012); //17
glTexCoord2f(1.f, O.0f);glVertex3f(-5.,.0,.036); //16
giTexCoord2f(1 .f, -1 .f);glVertex3f(-3.861 ,.0,-.206); //15

}
glEnd();

// Top

gIBegin(GL_TRIANGLE_STRIP);

glTexCoord2f(0.0f, 0.0f);glVertex3f(4.419, .0, -.789); //1
glTexCoord2f(1 .f, 0.0f);glVertex3f(3.642, .1,-1.347); //2
glTexCoord2f(1 .f, 1 .Of);giVertex3f(3.642, -.1, -1.347); i ll
glTexCoord2f(1 .f, -1 .f);giVertex3f(3.096, .15, -1.408); 1/3
glTexCoord2f(1.f, 1 .f);glVertex3f(3.096, -.15, -1.408);//3
glTexCoord2f(0.0f, 0.0f);glVertex3f(2.355, .235, -1.978); //42
glTexCoord2f(0.0f, 1.0f);glVertex3f(2.355, -.235, -1.978); 1/42

60

WO 2006/076647 PCT/US2006/001347

}
glEndQ;

,-2.063); //41
2,-2.063); //41
.063); //40
■2.063); //40
2.366); //39
-2.366); //39
.338); //39b
.338); //39b
,-2.293); //38
.2,-2.293); //38
>,-2.16); //37
2,-2.16); //37
.2,-1.808); //36
.2,-1.808); im
,-1.189); //33

//TA IL
glBegin(GL_POLYGON);

// glNormal3f(O.Of, -1 .f, 1 .Of);
giTexCoord2f(0.0f, 0.0f);glVertex3f(-6.00, .80, -2.257)
gUexCoord2f(1.f, 0.0f);glVertex3f(-6.714, .80, -2.257)
g!TexCoord2f(1.f, -1.f);glVertex3f(-6.714, -.80, -2.257)
glTexCoord2f(0.0f, -1 .f);glVertex3f(-6.00, -.80, -2.257;

glEndQ;

// cockpit glass

glDisabIe(GL_TEXTURE_2D);

glPopMatrix();

void DrawDispiay::draw_heIshad(void) {

float vec[10][3] = {{4.194,0.,0.},
{2.,7,0.},
{0.,.9,0.},
{-2.,.3,0.},
{-6.2,.05,0.},
{-6.2,0.,0.},
{-6.2,-.05,0.},
{-2.,-.3,0.},
{0.,-.9,0.},
{2.,-.7,0.}};

float tail[4][3] = {{-5.8, .80, 0.},
{-6^, .80,0.},
{-6.2, -.80,0.},
{-5.8, -.80,0.}};

double kf,kfx,alt;

alt = state[ALT]/hfct;

61

WO 2006/076647 PCT/US2006/001347

if(alt > 20)kf = 3.28*1.3;
if (alt <= 30)kf = 3.28*(1. + .3*att/20.);
(cf = 3,28‘
kfx = kf *cos(state[THETA]);

glPushMatrix();
glColor4f(.3,.75,.4,.4);
glTransiatef(state[N0RTH]+a!t*.1, state[EAST], -1.);
glScaIef(kfx,kf,kf);
glBegin(GLJPOLYGON);
glVertex3fv(vec[0});
glVertex3fv(vec(lj);
glVertex3fv(vec[2]);
glVertex3fv(vec[3]);
glVertex3fv(vec[4});
glVertex3fv(vec[5]);
glVertex3fv(vec[6J);
gtVertex3fv(vec[7]);
glVertex3fv(vec[8]);
glVertex3fv(vec[9]);
glEndO;
glBegin(GL_POLYGON);
glVertex3fv(tail[0]);
glVertex3fv(tail[1]);
glVerfex3fv(tail[2]);
glVertex3fv(tail[3]);
glEndQ;
glPopMatrix();

}

/* draw landing spot 7

void DrawDispiay.:draw_tchdwn(void) {
static double dist,x„tch,y_tch,z_tch;

float long_l[2](3] = {{-.5,.5,0.},

float shrt[2][3] = {{-.5,5.,0.},

float long Jt2][3} = {{.5,5.,0.},

float trunk[2][3] = {{0.,0.,0,},

float brnch[2][3] =

dist = 770.6;

{-.5,5.,0.}};

{•5,.5,0.}};

{0.,0.,-8.}};

{0.,1.,-6.}};

if(!ot_flag){
x_tch = state[NORTH] + cos(state[PSI])*dist;
y_tch = state[EAST] + sin(state[PSI])*dist;

// z_tch = statepOWN] + ALTJNIT-1
z_tch = state[DOWN] + 400.0-1,0;

}
else if(ot_flag){

glColor3f(1.,,2,.2);
gIPushMatrixO;
giT ranslatef (x_tch,y_tch,z_tch);

62

WO 2006/076647 PCT/US2006/001347

glLineWidth(l);
glSca!ef(2.,2.,2.);
glBegin(GL_LINE_STRIP);
glVertex3fv(!ongJ[0]);
g!Vertex3fv(longJ[1]);
glVertex3fv(shrt[0]);
glVertex3fv(shrt[1]);
glVertex3fv(long_r[0]);
glVertex3iv()ong_r[1]);
glEndQ;
glRotatef(90„0.,0.,1.);
glBegin(GL_UNE_STR!P);
glVertex3fv(iongJ[0]);
glVertex3fv(longJ[1]);
glVertex3fv(shrt|p]);
glVertex3fv(shrt[1]);
g!Vertex3fv(long_r[0]);
gl Vertex3fv(long_r[1]);
flIEndO;
glRotatef(90.,0.,0.,1.);
glBegin(GL_LINE_STRIP);
glVertex3fv(longJ[0]);
glVertex3fv(!ongJ[1]);
glVertex3fv(shrt[0]);
glVertex3fv(shrt[1]);
glVertex3fv(long_r[0]);
glVertex3fv(long_tt1]);
glEnd();
glRotatef(90.,0.,0.,1.);
glBegin(GL_LINE_STRiP);
glVertex3fv(longJ[0]);
glVertex3fv(longJ[t]);
gtVertex3fv(shrt[0]);
giVertex3fv(shrt[1]);
glVertex3fv(long_r[0]);
gl Vertex3fv(long_r[1]);
glEndO;
gIPopMatrixO;

}
}

void DrawDisplay::update_cmds(OptResult *optR)

double *t_t = optR->t_t;
double *alp_t = optR->alp_t;
double *col_t = optR->cot_t;
double *alp = new double [30];

for(Int i=0; i < optR->ToPilot; i+ +)
{

alPtO = (alp_t[i]*deg2rad);
ptch[i] = -aip[i] + mast_inc;
co|M = col_t[ifdeg2rad - COLL„MIN; // DCL & ENB on 7/1/04
col[i] = col_t[i]*deg2rad;
inp_time[i] = U li];

void DrawDisplay::draw_cmds(OptResult *optR)

63

WO 2006/076647 PCT/US2006/001347

bool swtchjlag;
int t_opt_cnt = 0;
int i_brk, i, num tiksj,j_cnt;
double delt, ctsc, cytr, atsc.atr, otr.csc.asc;
double k2;
double t_otto;
float aseg[50][3] = {0};
float cseg[50][3] = {0};
float vertik[2][3] = {0};
float v_aseg(500] = {0};
float v_cseg[500] = {0};
static bool h jlag = TRUE;
float auto_alt;

11 auto_alt = (60 - state[U]/ufct/4);
// auto_alt = (60 - state[U]/ufct/4 + state[W]/wfct/2);//sss
// auto_alt = (75 - state[U]/ufct/4 + state[W]/wfct/2 ;
II auto_alt = 50;

auto_alt = 32*min(1,(1 - state(U]/ufct/100));

COLL_CMD = 0;
THETAjCMD = 0;

rf(state[ALT]/hfct > auto_alt && h_flag)

swtch_flag = FALSE;

else
{

swtchjlag = FALSE;
II swtchjlag = TRUE;

h_flag = FALSE;
}

if(!swtch_fiag)
{
atsc = 0.5;
atr = 0.4;
asc. = 5.;
k2 =0.02;

esc = k2*100/(.12*.35/.15);
ctsc = -0.5;
ctr =-.4;
cytr = 0.;

delt=1;

glColor4f(.6,.6,.8,1);
if(!hJlag)glCoior4f(0,0,.8,1);

t_otto = 0;
glLineWidth(3);

64

WO 2006/076647 PCT/US2006/001347

if(EHG_FAlL){
t„faii = t_sim - t_fai!_st;.
t_otto = f_fail;
t opt_cnt+= 1;

}

for(i=0;i<optR->ToPilot-1 ;i++)
{

if(t_otto < inp_time[i+1]){
i_brk = i;
break;

>
}
if(t_otto >= inp_time[optR->ToPilot-1])i_brk = optR->ToPi!ot-1;
if(t_otto < inp_time[optR->ToPilot-1]){ ”

aseg[0][0]« 0;
aseg[0][1] = sin(interp((inp_time[i_brk3-t_otto),(inp_time[i_brk+l]-

t_otto),time_bias,(ptch[Lbrk]),(ptch[i_brk+13))); “

THETA_CMD = asin(aseg[0][1]};

for(i=1 ;i<optR->T oPilot-i_brk;H+){
aseg[l][0] = inp _time[i_brk+i] - t_ptto - time_bias;
aseg[i][1] = sin(ptch[i_brk+if);

glPushMatrix();
l ! glTranslatef(atr,-10*sin(state[rHETA]),-10.) ;
If glTrans)atef(a{r1-5'ksin(THETA_CMD),-'I0.);
// glT ranslatef(atr,-5*sin(asin(aseg[0l[1 L -1 Q .);

glT ranslatef(atr,-5*sin(state[THETA}),-10,);
g)Scalef(atsc,asc,1.);
glBegin{GL_LINE_STRIP);
for(i=0; i<optR->T oPilot-i_brk;i++)g|Vertex3fv(aseg[i]);
giHnd{);
gIPopMatrixO;

}
else if(t_otto >= inp_time[optR->ToPilot-1]){

THETA_CMD = (ptch[optR->ToPilot-1]);

num_tiks = floor(in p_time[optR->ToP ilot-1] - t_otto);
// num_tiks = 10;

Lent = 1;
for(j=0;j<num_tiks;j++){

while((inp_time[j_cnQ-t_otto) <= j+ i){
j cnt++;

}
^((inp„timeO_cnt]-t_otto) >j+1)

v_asegO] = sin(interp((inpjime[j_cnt-1]-t otto),(inp_timeO_cnt]-
t_otto) ,j+1 +time_bias, (ptch[j_cnt-1]), (ptchO_cnt])));

v_cseg|j] = sin(interp((inpjime0_cnt-1]-t otto),(inp_timeO_cnt]-
t_otto),j+1+time_bias,(col[j_cnt-1]),(GolO_cnt]))); “

65

WO 2006/076647 PCT/US2006/001347

}
}
glColor4f(1,1,1,1);
glPointSize (7);
gll_ineWidth(2);
for(i=0;i<num_tiks;i++){
vertikt0][0] = i+1;
vertik£1][0] = i+1;
vertik[0][1] = v_aseg[i] + .0075;
vertik[1][1] = v_aseg[i] - .0075;
glPushMatrix();
gITranslatef{atr,-10*sin(state[TH ETA]},-10.);
giTranslatef(atrl-5*sin(THETA_CMD),-10.);
gfTranslatef(atr,-5*sin(asin(aseg[0][1])),-10.);
giTranslatef(atr,-5*sin{state[THETAl),-10.);
glScalef(atsc,asc,1,);
glBegin(GL_L!NES);
giVertex3fv(vertik[0]);
glVertex3fv(vertik[1]);
glEnd();
gIPopMatrixQ;
}

// collective commands

g!Color4f(.6,.6,.8,1);
if(!h_flag)glCoIor4f(0l0,.8l1);
 ̂ for(i=0;i<optR->ToPilot-1 ;i++)

if(t_otto < inp_timep+1]){
i_brk = i;
break;

if(t_otto >= inp_time[optR->T oPilot-1])i_brk = optR->ToPilot-T
if(t_otto < inp_time[optR->ToPilot-1]){

cseg[0][0] = 0.0;
. .. . ,. cf e9i°ll1] = (interp((inp_time[i_brk]-t_otto),(inp_time[i brk+1]-
t_otto),time_bias,(col[i_brk])t(col[i_brk+1]))); 1

COLL_CMD = (cseg[0][1]);
for(i=1;i<optR->ToPilot-i_brk;i++){

cseg[i][0] = inp_time(i_brk+i] - t_otto - time bias;
cseg[i][1] = (col[i_brk+ij);

glLineWidth(3);
glPushMatrixQ;
glTransiatef(ctr,cytr-.025*coll_per,-10.);
glSca!ef(ctsc,csc,1.);
glBegin{GL_LINE_STRIP);
for(i=0;i<optR->ToPilot-i_brk;i++)glVertex3fv(cseg[i]);
glEnd();
gIPopMatrixQ;

66

WO 2006/076647 PCT/US2006/001347

else if(t_otto >= inp_time[optR->ToPi|ot-1]){
COLL_CMD = (coi[optR->ToPilot-1]);

II time ticks

glColor4f(1,1,1,1);
glLineWidth(2);
for(i=0;i<num_tiks;i++){
vertik[0}[0] = i+1;
vertik[1][0] = i+1;
vertik[0][1] = v_cseg[i] + .0055;
vertik[lj[1] = vcsegfi] - .0055;
glPushMatrlx();
giTranslatef(ctr,cytr-.025‘col!_per,-10.);
glScalef(ctsc,csc,1.);
glBegin(GLJJNES);
glVertex3fv(vertik[03);
glVertex3fv(vertikflj);
glEnd();
gIPopMatrixO;
}

}
else
{

/*
float alt_st = auto_alt;//max(5,auto alt - 2);
float u_st = 40*1.69;
float ,alt_gain = .1/alt_st;
float sink_st; ~
static float thetajnax;
float st_per;
float sink_gain;
float slnk_comp;
static bool alp jlag = TRUE;
float skid_ht = 3.;
float let_out = 1;
float omg gain;
float dummyl;
omg_gain = .01*(state[O] -1.0);

st_per = 0.5 + omg gain;
sink_gain = 3/20*(1.+ alt_gain*(ait_st - (state[ALT]/hfct - skid ht))):
smk_st = max(1,(state[ALT]/hfct)); ”
if(alp_flag)
{

theta_max = 25*min(1,(1 - max(((u_st - state[U]/ufct)/u„st),0)));
AL*5L«|

if(state[W]/wfct < 3)let_out = mio(0l(1+state[W3/wfci/10));
™ | F ^ - CMD = ' *T>ax(((aIt_st - (state[ALT]/hfct - skid ht))/alt st),0))+5/57.3
sink_comp = max(0,statetW|/wfct); ~
dummyl = abs((sink_comp) - sink_st);
COLL_CMD = let_out*max_pull()*(st_per + min((1-stjjer),(1-st_per)*sink_gain*dummy1));

67

WO 2006/076647 PCT/US2006/001347

float u_st = 40*1.69;
float a!t_gain = .1/auto_alt;
float sink_st;
static float theta_max;
float st_per = .6;
float sinkjain;
float sink_comp;
float col_cnst;
static bool alp_flag = TRUE;
sink_gain = 3/20.*(1.+ alt_gain*(auto_alt - state[ALT]/hfct));
sink_st = max(1,(state[ALT]/hfct));
sink_comp = max(0,state[W]/wfct);
col_cnst = sink_gain*(sink_comp - sink_st);

if(alp_flag)
{

thetajnax = 25*min(1 ,(1 - (ujst - state[U]/ufct)/u_st));
alp J a g = FALSE;

}
THETA_CMD = theta_max/57.3*(1 - 1/auto_alt*(auto„alt - state[ALT]/hfct));
CQLL_CMD = max_pull()*(st_per + min((1-st_per),(1-st_per)*col_cnst));

/* ""
FILE *pnFile = NULL;
if(IpnFile)
pnFile = fopen("errorouttxt", "a");
char buff 128];
sprintf(buf, ” alt %g col_cnst %g\n", state[ALT]/hfct, max_pull());
fprintf(pnFile, buf);
fflush(pnFile);
fclose(pnFile);
*1
}
}
void DrawDisplay::drawJles(void)
{

int I, j;
double cpsi, spsi, tan jh , yO, x0, x jn ax , y_max, x, y;
double trm1, trm2, that, x jo , y jo , x_hi, y j i ;
double hdg; _

double TMAXX= 100;
double TMAXY = 100;

if(view == CHASEPLANE)hdg = chs_psi;
if(view == OUT_THE_WINDOW)hdg = state[PSI];

cpsi = cos(hdg);

68

WO 2006/076647 PCT/US2006/001347

spsi = sin(hdg);

thta = 80/57.3/2;
ta n jh = tan(thta);
xO = statefNORTH]+nn;
yO = state[EAST]+en;
Xjmax = __min(FPT * TMAXX, MAX„TD);
y_max = __min(FPT * TMAXY, MAX_TD);
x jo = __max((x0-x_max),0);
x_hi = __min((xO+x_max),FPB*BMAXX);
y jo = __max((yO-y_max),0);
y__hi = __min((yO+y_max))FPB*BMAXY);

glPushMatrix();

if((hdg) <= 45/57.31| (hdg) > 315/57.3){

for(x = xO;x<=x_hi;x += FPT){
i = floor(x/FPT)-4*cpsi;
trm1 = yO + (x - xO)*(-cpsi*tan_th + spsi)/(cpsi+spsi'tanjh);
trm2 = yO +■ (x - x0}*(cpsi*tary_th + spsi)/(cpsi-spsi*tanjh);
if(trm1 < 0)trm1 = 0;
if(trm2 > y_hi)trm2 = y_hi;

for(y = trm1;y<= trm2; y+=FPT){
j = fioor(y/FPT)-4*spsi;;
draw_lines(i,j);

}
}

else if((hdg) > 45/57.3 M (hdg) <= 135/57.3){

for(y = yO;y<=y_hi;y += FPT){
j = floor(y/FPT)-4*spsi;
trm1 = xO + (y - yO)*{ cpsi+spsi*tan_th)/(-cpsi*tan_th + spsi);
trm2 = xQ + (y - yO)*(cpsi-spsi*tanjh)/(cps'PtanJti + spsi);
if(trm2 < 0)trm2 = 0;
if(trm1 > x_hi)trm1 = x_hi;

for(x = trm2;x<= trm1; x+=FPT){
i = floor(x/FPT)-4*cpsi;;
drawjines(ij);

}
1

}

else tf((hdg) > 135/57.3 && (hdg) <= 225/57.3){

for(x = xO;x>=x_lo;x -= FPT){
i = floor(x/FPT)-4*cpsi;
trm1 = yO + (x - xO)*(-cpsi*tan_th + spsi)/(cpsi+spsi*tan_th);
trm2 = yO + (x - xO)*(cpsi*tan_th + spsi)/(cpsi-spsi*tan_th);
if(trm2 < 0)trm2 = 0;
if(trm1 > y_hi)trm1 = y_hi;

for(y = trm2;y<= trm1; y+=FPT){
j = floor(y/FPT)-4*spsi;;
draw_lines(i,j);

}

69

WO 2006/076647 PCT/US2006/001347

}
}
else if((hdg) > 225/57.3 && (hdg) <= 315/57.3){

for(y = y0;y>=y_lo;y -= FPT){
j = floor(y/FPT)-4*spsi;
trm1 = xO + (y - y0)*(cpsi+spsi*tan _th)/(-cpsi*tan J h + spsi);
trm2 » xO + (y - yO)*(cpsi-spsi*tan_th)/(cpsi*tan_th + spsi);
if(trm1 < 0)trm1 = 0;
if(trm2 > x_hi)trm2 = x_hi;

for(x = trm1 ;x<= trrin2; x+=FPT){
i = floor(x/FPT)-4*cpsi;;
draw_lines(i,j);

}
}

}
gIPopMatrixO;

}

void DrawDisplay::draw_pip(void)

inti,j;
double Grit;

float boreJp[6]t3] = {{-.65, 0 ,0 .} ,
{-.15,0, 0.},
{-.25,-.1,0. },
{.65,0, 0 .},
M 5 , 0, 0.},
{,25,-.1,0.}};

float hor{43[3]= {{-3., 0 ,0 .} ,
{-2,0, 0 .},
{2, 0, 0.},
{3., 0,0.}};

glLineWidth(l);
glCo1or4f(1., 1., 0 ,1);
crit = state[ALT]/hfct-fabs(6*3.28*sin(state[THETA]));
if(crit <= 1.5*state[W]/wfct && Hand Jlag){

if(blink_one){
gl.Color4f(1„ 1., 0,1.);
glLineWidth(3);

}
tf(blink_two)glColor4f(1., 1., 0,1);

}

for(i=0;i<6;i++) {
for(j=0;j<3;j++) {

bore_fp[i][j] = bore_fp[i][j] * 2.;
}

}

70

WO 2006/076647 PCT/US2006/001347

glPushMatrix();
glTranslatef(0, 0, -10);

gIBegin (G L_LI N ES);
gl Vertex3fv(bore_fp[0]);
glVertex3fv(bore_fp[1]);

glEndQ;
giBegin(GL_LINES);

glVertex3fv(bore_fp[3]);
glVertex3fv{bore fp[4]);

glEndQ;
glPopMatrixQ;

/*

for(i=0;i<4;i++) {
for(j=0;j<3;j++) {

hor[i]fj] = hor[i][)] * 1

}

glPushMatrix();
glColor3f(,0, ,8,1.);
glLineWidth(2);
gITranslatef(0, 0, -10);

glRotatef(state[PHI]*57.3,0.,0.,1.);
glT ranslatef(0.,-10*(double)sin(state[THETA]), 0 .);
glBegin(GLJJNES);

glVertex3fv(hor[0j);
glVertex3fv(borf11);

glEndQ;
glBegin(GL_UNES);

glVertex3fv(hor[2l);
g!Vertex3fv(hor[3]);

glEndO;
glPopMatrix{);
*/

void DrawDisplay::draw_rotor(void)

double tjnd ;
int i;
float drg;
giPushMatrixO;
if (! landJlag)tJnd = t_sim;
drg = exp(1 *(t_lnd-t_sim));
gIRotatef(100*(tjnd - 1*drg), 0.0, 0.0,1.0);
for(i=0;i<5;i++){

giPushMatrixO;
glRotatef(72*i, 0.0, 0.0,1.0);
glBegin{GL_POLYGON);

glTexCoord2f(O.Of, O.Of);glVertex3f(0.0, .75, -8.5);
glTexCoord2f(1.f, 0.0f);glVertex3f(18.0, .75, -9.5);
glTexCoord2f(1.f, -1.f);glVertex3f(18.0, -.75, -9.5);

71

WO 2006/076647 PCT/US2006/001347

gITexCoord2f(O.Of, -1 .f);glVertex3f(0.0, -.75, -8.5);

glEnd();

glBegin(GL_POLYGON);
{

gITexCoord2f{0.0f, 0.0f);glVertex3f(1.5,1.2, -8);
glTexCoord2f(1.f, -1.f);gIVertex3f(1.5, -1.2, -8);
giTexCoord2f(1.f, O.Of) ;glVertex3f (0.0,0, -9);

}
g!Ertd();
glPopMatrix();

}
glPopMatrixQ;

void DrawDisplay.:draw_lines(int i, int j) {

float w[4][3], red, grn, blu;
double x_00, x_10, y_00, y_01, z_00, z_01, z_10, z_11;
double h j , h_r, px, py, pz, dspjjist, trma;
Int i_blk, i_blk;
double mag, x jile , y jile , z_tile;
int L00_00,j_00_00,i_00_10,j_00_10,i_00_11 ,j_00_11 ,i_00_01 ,j_00_01;
int U 0 „00,j J0_00,L10_10,j_1 0J 0 ,i_1 0_ 1 1 ,j_10_11 ,i_10 01 , j j0 _ 0 1 ;
int L 1 1 _00,j_11 _00,i_11_10,j_11_10, L 1 1 _11, j_11 _11 ,L 11 _01 ,M 1 _01 ;
int i_01_00,j_01_00,L01 _10,i_01_10,i_01_11,j_01_11 ,i_01 _01 ,j_01_0V,
double bx_00_00,bx_00_10,by_00_00,by_00_01 ,bxj0_00,bx_10_10,by_10_00,by_10_01;
double bx_11 _00,bx_11 _10,by_11_00,by_11 _01 ,bx_01 _00,bx_01 _10,by_01 _00,by_01 _01;

x ji le » i * FPT;
yJiie = j*F F T ;

i_blk = fioor(xJile/FPB);
j_blk = floor(y_tile/FPB);

z_00 = gnd[i_blk]0_blk];
z J O = gnd[i_blk+1lO_blk];
zl.01 = gnd[Lblk]Q_blk+1];
z_11 = gnd[i_blk+1]0_blk+1];

h j = interp(i_blk*FPB, (i_blk+1)*FPB, x tile, z_00, z_10);
h_r = interp(i_blk*FPB, (i_blk+1)*FPB, x ji le , z_01, z j 1);
zutile = lnterp(j_blk*FPB, O-blk+1)*FPB, y jile , h j , h_r);

px = (x jile - statefNORTH]);
py = (y jile - state[EAST]);
pz = (z jile - $tate[DOWNJ);

mag = sqrt(px*px + py*py);

red = 1. - mag/MAX_TD;
if(red < .6)red = .6;

grn = .9 - mag/MAX_TD;
if(grn < .7)grn = .7;

blu = .85 - mag/MAX_TD;
if(blu < ,4)b!u = .4;

72

WO 2006/076647 PCT/US2006/001347

glColor4f(red, grn, blu,.5);
H glColor3f(1,1,l);

I* assign ground blocks to respective tile comers 7

x_00 = x_Jile - TW/2.;
X_10 = x__tife + TW/2.;
y_00 = y_tile - TW/2.;
y_01 = y_tile + TW/2.;

L00_00 = floor(x_00/FPB);
j_00_00 = floor(y QO/FPB);
L00_10 = i_00 00 + 1;
i_00_10 = j_00_00;
i_00_11 = i_00 10;
j_00_11 =L00_00 + 1;
i_00_01 = i_00_00;
i_00_01 = j_00_11;

L10_00 = ffoor(x 10/FPB);
j_10_00 = j_00_00;
L10_10 = L10_00 + 1;
L l0 _ 1 0 = j_10_00;
L10_11 =i_10_10;
j-10_11 = j_10_00 + 1;
L10_01 = i_1 OjOO;
j_10_01 =}_10_11;

L11_00 = i_10_00;
j_11_00 = floor(y_01/FPB);
L11_10 = L11_00 + 1;

= j_11_00;
L11-11 =i_11_10;
L11_11 =L11-00 + 1;
L11-01 =L11_00;
j-11_01 =j_11_11;

i_01_00 = i_00_00;
L01_00 = j_1l_00;
L01_10 = i_01_00+1;
j_01_10 = j_01_00;
L01_11 = i_01_10;
L01_11 =j_01_00 + 1;
L01_01 = i_01_00;

= j_01_11;

bx_00_00 = i_00_00*FPB;
bx_00_10 = LOO_1 0*FPB;
by_00_00 ~ L00_00*FPB;
by_00_01 = j_00_01*FPB;

bx_10_00 = i_10_00*FPB;
bx_10_10 = i_10_10*FPB;
by_10_00 = j_10_00*FPB;
by_10_01 = j_ l o_01 *FPB;

bx_11_0 0 = i_11JXTFPB;
bx_11_10 = i_l 1_1 o*FPB;

73

WO 2006/076647 PCT/US2006/001347
byj1_00 = j_11_00*FPB;
by_11_01 = j_11_01 *FPB;

bx_01_00 a i_01_00*FPB;
bx_01_10 a i_01J0*FPB;
by_01_00 = j_01_00*FPB;
by_01_01 = j_01_01*FPB;

if{agl > 100)dsp_dist a 150*TW;
if(agl <= 100){

trma = agl;
if (agl < 0)trma = 2;
dsp_dist a 150*TW + 500/trma;

gIPushMatrixQ;
glEnable{GL_DEPTH_TEST);

if(mag < dsp_dist)
{

h j = interp(bx_00_00, bx_00_10, x_00, gnd[LOO_00][j_00_00], gnd[i_00_10][j_00_00]);
n_r = interp(bx_00_00, bx_0Q_1O, x_00, gnd[iJ)0_00][jJ30_011, gnd[i_00 101fi 00 011):
z_00 = interp(by_00_00, by_00_01, y_00, h j, h_r);

h j = interp(bx_10_00, bx_10_10, x_10, gnd[M 0_00]Q_lo_00], gndp_lo_i0]D_10_00]):
h_r = interp(bx_10_00, bx_10_10, x_10, gnd[i_10_00][j_10_01], gnd[L10 101[L10 01]);
z_10 = interp(by_10_00, by_10_01, y_00, h j r h_r);

h J = mterp(bx_11 00, b x j 1 _10, x_10, gnd[i_11 _00][j_11 _00], gndp_11 _1OjHJ1 00]);
h_r = interp(bx_11_00, bx_11_10, x JO , gnd[i_11_00][j_l 1_01], gnd[i_11 io i f i l 1 011);
z_11 = interp(by_11 J)0, by_11_01, y_01, h j , h_r); “ 1

h j = interp(bx_01_00, bx_01_10, x_00, gnd[i_01_00][j_01_00], gnd[i_01_l0]R 01 00]):
in_{erP(bx_°1 _00, bx_01_10, x_00, gnd[L01 _00][j_01 _01], gnd[i_01 _1Q][jl01 01]);

2-01 = interp(by_01 _00, by_01 _01, y_01, hJ, h_r);

w[0][0] = x_00;
w[0][1] = y_00;
w[0][2] = z_00-lyft;

w[1][0] a x_10;
wC1](1] = y_OQ;
w [1]{23 = z_10 - lyft;

w[2][0] a x_10;
w[2][1] = y_01;
w[2][2] = z_11 - lyft;

w[3][0] = x_00;
wt3][1] = y_01;
w[3][2] a z_01 - lyft;

glBegin(GL_LINES);
{

glVertex3fv(w[Q]);
glVertex3fv(w[1]);

74

WO 2006/076647 PCT/US2006/001347

glEndO;

glBegin(GLJJNES);
{ '

glVertex3fv(w[1]);
glVertex3fv(w[2]);

}
glEnd();

glBegin(GL_LINES);
{

glVertex3fv(w[2]);
giVertex3fv(w[3]);

}
glEndO;

glBegin(GLJJNES);
{

glVertex3fv(w[3]);
glVertex3fv(w[0]);

}
glEndO;

else if(mag > dsp_dist)
{

w[0][0] = x_ti!e;
w[0][1] = y jile ;
w[0][2] = z_tile - lyft;

glBegin(GL_LINES);
{

glVertex3fv(w[0]);
w[0][0] += TW;
glVertex3fv(w[0]);

}
glEndO;

glBegin(GL_LINES);
{

glVertex3fv(w[0J);
w [0][1]+= TW;
g!Vertex3fv(w[0]);

}
glEndO;

}
glPopMatrix();

}

GLvoid DrawDisplay::glPrint(bool blink,float xtr,float ytr, float ztr, float xsc,float ysc,
 ̂ 7 int set,float rd,float gn,float bl,float tr, char *fmt,

char text[256];
v a jis t ap;

Arguments

// Holds Our String
II Pointer To List Of

if (fmt== NULL)
return;

II If There's No Text
I I Do Nothing

75

WO 2006/076647 PCT/US2006/001347

va_start(ap, fmt);
vsprintf(text, fmt, ap);

va_end(ap);

if (set>1)
Character Set?

{
set=1;

}
glEnable(GL_TEXTURE_2D);
glLoadldentityO;
glPushMatrix();
if(!blink){

glColor4f(rd,gn,bI,tr);
}
else if(blink){

if(bIink_one)glCoior4f(rd,gn,bl,tr);
■rf(blink_two)glColor4f(1 .f ,1 .f,0 .f ,1);

}
glT ranslatef(xtr,ytr,ztr);
glRotatef(180,1,0,0);
glListBase(base-32+(128*set));

if (se t= 0)
Font

{
glScalef(1.5f,2.0f,1.0f);

}
glScalef(xsc,ysc,1 .Of);
gICaIILists(strlen(text),GL_UNSIGNED_BYTE, text);
g!Disable(GL_TEXTURE„2D);
glPopMatrixQ;

// Parses The String For Variables
/ / And Converts Symbols To Actual Numbers

// Results Are Stored In Text

// Did User Choose An Invalid

//. If So, Select Set. 1 (italic)

// Enable Texture Mapping
// Reset The Modelview Matrix

// Position The Text (0,0 - Bottom Left)

// Choose The Font Set (0 or 1)

I I If Set 0 Is Being Used Enlarge

// Enlarge Font Width And Height

I I Write The Text To The Screen
// Disable Texture Mapping

I*----- ---------------- -*/
I* draw FPVector footprint */ r------------------------------V

void DrawDisplay::draw_foot(double x_proj,double y_proj, double psi_up) {

float w[4][3];
double x_00, x_10, y_00,z_00, z_10, z_11,x_11, y_11 ,y_10;
double h_r, h j;
double cpsi, spsi;
int i_00_00,j_00_00,i_00_10,j_00_10,i_00_11 ,j_ 0 0 J 1 ,i 00_01 ,j_00_01;
int i_10_00,j_10_00,i_10J 0,j_10_10,i_10_11 ,j_10_11 ,i 10_01 ,j_10_01;
int i_11_00,j_11_00,L11_10,j _11_10,i_11_11 ,j_11_11 ,i_t 1_01 ,j_11_01;
double bx_00_00,bx_00_10,by_00_00,by_00_01 ,bx_10_00,bx_10_10,by_10_00,by_10_01;
double bx_11_00,bx_11_10,by_11_00,by_11_01;

spsi es sin(psi_up);
cpsi s cos(psi_up);

x_00 = x_proj +TW/2.*spsi;
x_10 = x_proj + TW*cpsi;
x_11 = x_proj - TW/2*spsi;.
y_00 = y_proj - TW/2.*cpsi;
y_10 = y_proj+ TW/2.*spsi;
y_11 = y_proj + TW/2.*cpsi;

76

WO 2006/076647 PCT/US2006/001347

L00J30 = floor(x 00/FPB);
j_00_00 = floor(y_00/FPB);
i_00_10 = i_00_00 + 1;
j_00_10 = j_00_00;
i_00_11 = i_00_10;
j_00_11 = j_00_00 + 1;
i_00_01 = i_00_00;
j_00_01 = j_00_11;

L10_00 = floor(x_10/FPB);
j_10_00 = floor(y_10/FPB);
L l0 _ 1 0 = i_10_00+ 1;
L10_10 =)J0_00;
L 1 0 _ 1 1 = i_10_10;
j_10_11 = j_10_00 + 1;
i_10_01 = i_10_00;
U0_01 = j_10_11; .

L11_00 = floor(x_11 /FPB);
j—11 _00 = floor(y_11/FPB);
L11_10 = L11_00 + 1;
j_ 1 1_10 = j_11_00;
L11_11 =i_11_10;
J—11-11 = j_11_00 +1 ;
i_11_01 = i_11_00;
J—11—01 =L11_11;

bx_00_00 = i_00_00*FPB;
bx_00_10 = i_00_10*FPB;
by_00_00 = j_00_00*FPB;
by_00_01 as j_00_01 *FPB;

bx_10_00 = i_10_00*FPB;
bx_10_10 = i_10_10*FPB;
by_10_00 = j_10_00*FPB;
by_10_01 = j_10_01 *FPB;

bx_11 _00 = i_11_00*FPB;
bx_11 _10 = l_11 _10*FPB;
by_11_00 = j_11_00*FPB;
by_11_01 = j_11_01*FPB;

h j = interp(bx_00_00, bx_00_ 10, x_00, gndp_00_00][j_00_ 00L gndfi
ln êrP(bx_00_00, bx_00_10, x_00, gnd[i_00_00][j 00 011, gndfi"

z_00 =s mterp(by_00_00, by_00_01, y_00, h j , h_r); ~ J 9 L

h_l = lnterp(bx_10_00, bx_10_ 10, x_10, gndp_10_00][j_ l0_00], gndfi
inte/ p(bx- 10- 0°. bx_10_10, x_1°, gnd[L10_00]Q 10 Oll.gndf

z_10 = interp(by_10_00, by_10_01, y_lo, h j , h_r); “

h j - interp(bx_11_00, bx_11_10, x_11, gnd[i_11_00]Q_11_00], gndfi
h r - interp(bx_11_00, bx_11_10, x_11, gnd[i_11_00]Q 11 01], gndf
z_11 = interp{by_l 1 __00, by_1 1_01, y_11, h I, h r); “ “ 9

w[0][0] = x_00;
w[0][1] = y_00;
W[0][2] = 2_00 - lyft;

W f1][0] = X_10;

.00_l0][j_00_00]);
,00_10][j_00_0l]);

.10_10]fj_10_00]);
-10_10]fj_10_01]);

.11 —10][j_11 _00])'
-11-10]fi_11_01]);

77

WO 2006/076647 PCT/US2006/001347

wnJLi] = y_lO;
W[1][2] = z_10 - lyft;

W{2][0] = x_11;
w[2][1] = y_11;
w[2lt2] = z_11 - lyft;

g(Color3f(95., .3, 0);
glBegin(GLJJNES);

glVertex3fv(w[0]);
glVertex3fv(w[1]>;

glEnd();

glBegin(GLJJNES);

glVertex3fv(w[1]);
glVertex3fv(w[2]);

glEnd();

glBegin(GLJ_!NES);

glVertex3fv(w[2]);
glVertex3fv(w[0]);

glEnd();
}

double DrawDisplay;:checkJmp_bt(double x_pos, double y_pos, int i, int j)

double h_r, h j , imp_ht; -

h j = interp(i*FPB, (i+l)*FPB, x_pos, gnd[i]0], gnd[i+1]0]);
h_r = interp(i‘ FPB, (i+1)*FPB, x_pos, gnd[i]Q+1], gndri+1]0+1]);
imp_ht = interpO*FPB, (j+1)*FPB, y_pos, h j , h_r);

return imp_ht;
}

double DrawDisplay::lnterp(doubIe x jo , double x_hi, double x_pt, double y jo , double y_hi)

double a, b, y_pt;

a = x_pt - xJo;
b = x_hi - x_pt;
y_pt = (a*y_hi + b*yJo)/(a + b);
return y_pt;

78

WO 2006/076647 PCT/US2006/001347

WHAT IS CLAIMED IS:

1. A computer implemented method for guiding a pilot during rotorcraft autorotation

comprising the steps of:

5 (a) determining the current state of the rotorcraft;

(b) computing the current constrained optimal trajectory of the rotorcraft for

autorotation to landing;

(c) computing the control inputs required to achieve the current optimal

trajectory;

10 (d) providing the pilot visual cues where to currently position the controls to

follow the current optimal trajectory;

(e) providing the pilot a visual preview of when and where to position the controls

at future times to follow the current optimal trajectory;

(f) repeating steps (b) through (e) until landing occurs.

79

WO 2006/076647 PCT/US2006/001347

4 :

•■'.r • ;■ -;’! ''• • • . / S :V-- 7v

K v • -Yi 7 ;::Y\;'-Y Yn\

Figure 1. Bell 206L-4 single rotor helicopter

1/17

WO 2006/076647 PCT/US2006/001347

(a)

(b)

Figure 2. Frasca International Bell 206 Flight Training Device (FTD)

2/17

WO 2006/076647 PCT/US2006/001347

orrej 1 ^ B CIrxj » ^ C cl7rt i cmj

FLIGHT SIMULATOR
Data

Send/Receive

Ethernet

Figure 3. Interface between the optimal guidance and the FTD

3/17

WO 2006/076647 PCT/US2006/001347

INDICATED AIRSPEED - KNOTS
NOTE

Takeoff shaded crow are based an using hover
poworplusCS-otfirnue. _ „1 20CUH3

Figure 4. Height-Velocity diagram for the Bell 206L-4 Helicopter Results

4/17

WO 2006/076647 PCT/US2006/001347

£
0o
■e

0 COs §
o•Q<

-4-»jcD)'(DI"D
CO

600

550

500

450

400

350

100
g 90

- 100

8 80
70

o

g co „„
8 § 60 w 5 0-9
f £ 40

50

•S> 30
20

'a>x
1 10

0

\ AVOID OPERATION INSIDE
BOUNDARY LINES\

\
\

\
\

\ —
\ /

/ - Aloove 4 150 lbs3 to 44EiO lbs
\

C)
.\

f \

V
\

*4 ^

O____ c

0 \

}____ \

>k

\ /
/ - 41 50 lbs and be low

J \
\
r A r Safe Landing:

O Lightweight
□ Medium Weight
A Heavyweight

Crash Landing:
Lightweight
■ Medium Weight
A Heavy Weight

fcd

II ■ i

V
, N ,

\ c
\

J

O r \ A \ o

k vA
\
\

2------
\

\\) \J M ■r_J— \
\
t

\
\V. J

r•N f A

i
i
■

11
\V. J L 7-------- 1 —|-----

\
1

A L
r

1

) ' •
c

J
> /

0

K-> i
i

/

1

/

(/ / i
/

^ ■” *— ^ ,

V.
- - -2\ JL,l ^

_ Y 'c) c) 4150 lbs
and below

____ A
80 130

Indicated Airspeed (kts)

Figure 5. Automated autorotation flight conditions evaluated

5/17

WO 2006/076647 PCT/US2006/001347

600

550

500

& 450<D
1 e

“a? 5 400 (
8 S’« o .
1 < 350 5tn, -gj

® 300 C

CO o jrn C

\
\ AVOID OPERATION INSIDE

BOUNDARY LINES\
\

\

\

\ /
A 30ve 4 150 lbs to 445;o lbs

> - 4 '6> in 18 \

-9 ^
v.,6 (

3 '
V-,8

H

\
>k

V
41 50 lbs and beslow

10

) Y
-8 \

>5 y / / \ r> 30
J I
-7

i—?

----- ^
8-V

\
\ q

\

)*3

 ̂ ZOU j

200 C

150 ^

1 0 0 - 1 0 0 (
g 90 -
S 80 -
H 70 ~

g ? 60
o ^ 50 -
i 5 £ 40
"" f - 3 0 -

? 2 0

OT 1 0 - r
n C

11
7 10 n

\
p '

\
\

-8 4
I

39
?
6 \

1

\

\

9

) ? (
33

) T

n

l
I

\

\(/ l

-6 4 -
/ *

-11

• T
I 9 \

1

r
J

1
> -J)9

f

\

7-

O ' /

/

/

/

1 12

r

t J

/

j ? - ■

^ 5

' - 4 * * " 3

**
** 40

^ 5
> 4 °

4150 lbs
and below

____ A
J 0 10 20 30 40 50 60 70 80 V 12

Indicated Airspeed (kts)

Figure 6 Touchdown ground-speed and sink-rate (light weight condition)

6/17

WO 2006/076647 PCT/US2006/001347

CDO
■§3

0) CO
COo
CO

76
E
CO

0>o
X)<
g>©I■g

CO

100
g 90
8 80 45

_ i 70
® co Rn
CD <D DU O >
: ^ so
f ~ 40
~ f 30

? 20
M 10

0

550

500

450

400

350

300

250

2 0 0 '

150

100

600
\

\ AVOID OPERATION INSIDE
BOUNDARY LINES

\

\

\
\ A bove 4150 lbs to 44f'0 lbs

>w
\ \

-•9 2 \
\

>.
\ /

/ " 4150 lbs and below

23
\

\ / A Safe Landing:
□ Medium Weight
A Heavyweight

Crash Landing:
■ Medium Weight
A Heavy Weight

1
17

II I
24

H I 4

r-4

\
w

V
: 15« 1

\
\

1 1 1

28-

T

31

PH A
19

;48 1
\]

-27 \

is |
-11 \

\
38

"30
\

\
>
\\

\
1

1
l

J

21

1

\

1----
l
1J

A
31 J

* I
L--119

20

f

1 31
y -H

1
1

*"32 35I 17 J
1 ~

1----
/

/

/ i

/

— — - -2
—90-

v -H
<0+ 9

4150 lbs

and below
____ A

80 130
Indicated Airspeed (kts)

Figure 7. Touchdown ground-speed and sink-rate
(medium and heavy weight conditions)

7/17

WO 2006/076647 PCT/US2006/001347

Figure 8. Automatic autorotation from 200ft/0kts; light weight condition (2900 lbs)

8/17

WO 2006/076647 PCT/US2006/001347

G
...............

________ i________ i________ i________ i________ i________

1
0.50

-0.5
-1

;.......— ! v..............
........!...■/--.........

Time (sec)
10 12

Figure 9. Automatic autorotation from 400ft/0kts; light weight condition (3100 lbs)

9/17

8C
0,

(O
to

1)

H(
ft)

0(

de
g)

C3

(%
)

w(
fl/

se
c)

i/(

kt
s)

WO 2006/076647 PCT/US2006/001347

0 2 4 6 8 10 12
Time (sec)

Figure 10. Automatic autorotation from 20ft/70kts; light weight condition (3085 lbs)

10/17

WO 2006/076647 PCT/US2006/001347

Tim© (sec)

Figure 11. Automatic autorotation from 300ft/60kts; light weight condition
(3085 lbs)

11/17

(-1
lo

1>

6C
„,

(O
lo

l)

H
 (I

t)
6(

ds
g)

0(

%
)

w
 (M

se
c)

WO 2006/076647 PCT/US2006/001347

Figure 12. Automatic auto rotation from 400ft/0kts; heavy weight condition
(4440 lbs)

12/17

WO 2006/076647 PCT/US2006/001347

Figure 13

13/17

WO 2006/076647 PCT/US2006/001347

n

Figure 14

14/17

WO 2006/076647 PCT/US2006/001347

i Display

4. Rotor Speed

2. Height Above
Ground

6. Vertical Speed'

13. Turbine.
Speed

5. Forward Speed

... 1. Helicopter Symbol

O
" 4
m

Figure 15

15/17

WO 2006/076647 PCT/US2006/001347

Figure 16

16/17

WO 2006/076647 PCT/US2006/001347

Figure 17

17/17

