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SYSTEMS, METHODS AND APPARATUS FOR ORGANIZING 
GROUPS OF SELF-CONFIGURABLE MOBILE ROBOTIC AGENTS IN

A MULTI-ROBOTIC SYSTEM
CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] The present application claims the benefit of priority under 35 U.S.C. §119
from U.S. Provisional Patent Application Serial Nos. 60/404,945 and 60/404,946, filed on 
August 21,2002, the disclosures of which are hereby incorporated by reference in their 
entirety for all purposes.

BACKGROUND OF THE INVENTION
[0002] There are several categories of prior art patents that apply to the present 
invention. These patents involve mainly mobile robots and groups of mobile robots.
[0003] Matsuda (robot system and control device), U.S. Patent No. 5,825,981; Peless 
et al. (method for operating a robot), U.S. patent application publication number # 
20010047231; and Nourbakhsh et al. (socially interactive autonomous robot), U.S. patent 
application publication number # 20020013641, mobile robots are used automatically, or 
with manual intervention to perform tasks such as multifunctional manufacturing, cleaning, 
mowing, snow blowing or interacting with humans. These pedestrian approaches to robotic 
control fit into the main paradigm of robotic applications.
[0004] Kawakami (mobile robot control system), U.S. Patent No. 5,652,489; Asama 
et al., (mobile robot sensor system), U.S. Patent No. 5,819,008; and Wallach et al. 
(autonomous multi-platform robot system), U.S. Patent No. 6,374,155 involve multiple 
mobile robots. These patents involve using sensors for navigation and obstacle avoidance. In 
addition, one mobile robot can transmit information to another mobile robot for some effect. 
These inventions offer only rudimentary connections between robots and lack advanced 
system functions.
[0005] Most of the research history involving the technologies of the present system -  
including (1) intelligent agents and self-organizing systems, (2) Al and D-AI in coordinated 
systems, (3) negotiation and problem solving and (4) cooperating agents and aggregation
are represented in the academic literature, described below.
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[0006] The development of complexity theory is fairly recent. Theorists from
economics and biology advanced the view in the 1980s that systems are self-organizing and 
adaptive of their environments. In particular, biologists have studied ant and insect social 
organization and have observed the complex adaptive behaviors of these societies.

5 [0007] Researchers at the Sante Fe Institute (SFI) have developed complexity theory
by looking at the fields of biology, economics, mathematics, epistemology and computer 
science. One of the aims of the SFI is to develop a complex self-organizing computer model 
representing artificial autonomous agents that emulate the biological functions of complex 
insect social behavior.

10 [0008] SFI theorists have developed the swarm intelligence model of artificial
computer societies primarily for simulating economic systems. The swarm intelligence 
model, by emulating biological system operation, uses ideas of emergent behavior to describe 
the complex social interactions of relatively simple insects according to straightforward 
decentralized rules governing group activity.

15 [0009] The challenge for computer scientists lies in how to develop a system of self-
organized autonomous robotic agents. The development of societies of behavior-based 
robotics that fuse elements of system control with elements of decentralized local control is 
one of the most difficult challenges in computer science and robotics. A key part of this 
problem lies in how to configure AI systems for problem solving in a MRS for collective

20 behavior. In short, how can we design an intelligent MRS for optimal adaptation to dynamic 
environments?
[0010] The computer science fields of robotics and AI have evolved in the past
decade in such a way that a convergence of technologies allows an explosion in research in 
collective robotics and in intelligent systems in order to achieve the goals of developing an

25 intelligent MRS for group behavior. For example, rapid advances in computation resources, 
communications and networking allow the combination of integrated technologies necessary 
for a development of a sophisticated MRS. In addition, in the area of AI research, several 
trends have emerged, including GA, GP, A-NN and distributed AI, that allow computer 
systems to not only learn but achieve some degree of autonomy.

30 [0011] In the early 90s, Brooks developed a decentralized modular approach to
robotics at MIT’s Media Lab. Revolutionary at the time because it spumed conventional 
wisdom of highly computation-intensive deliberative robotic control approaches, his modular
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approach used less than three percent of traditional computer approaches. This leap in 
efficiency was achieved by separating the subsystems for automatic reactive control (he 
called it subsumption) rather than deliberative top-down robot system control. The mobility, 
navigation and pick-up functions of the robot could be separated for increased efficiency.
[0012] By exploiting this research stream, Arkin (1998) developed a behavior-based 
model of robotics. In this model, Arkin describes behavior-based robotic architectures as 
well as experiments in the field with sophisticated hybrid robotic architectures. An example 
of this hybrid approach is NASA’s Atlantis system (1991) that synthesizes deliberative 
planning with group behavior. The aim of these models is to develop autonomous robots that 
are adaptive to their environment. The development of robotic teams with social behavior is 
one of the most difficult challenges, according to Arkin’s pioneer study.
[0013] Bonabeau et al. (1999), an SFI fellow, develops a research stream that 
connects the study of ant and insect behavior in complex biological social systems with the 
development of complex artificial robotic societies. In their vision of swarm intelligence, 
they use key notions of system self-organization, reactive behavior and environmental 
adaptation to point to a model for artificial robotic systems that might emulate biological 
systems.
[0014] In 2001, Kennedy and Eberhart focused on the social and theoretical aspects 
of swarm intelligence. Their examination of group behavior develops a computer model of 
adaptive self-organized systems, similar to economic “particle” simulations by the SFI, by 
emulating the social behavior of biological systems. In order to develop an artificial swarm 
system, the authors look to complex pattern emergence, which has a lineage from Von 
Neumann to Burks to Wolfram. In this research stream, cellular automata are used to 
simulate a complex but stable self-organizing system. Though the authors refer to research 
experiments with robot societies, their focus remains on computer and theoretical models of 
complex social behavior involving autonomous entities.
[0015] Another important research stream involves the application of AI to networks. 
The emergence of the Internet has presented novel ways to conduct commerce automatically 
with autonomous software agents in a MAS. Originally developed by Smith, the contract-net 
protocol established an early model for distributed problem solving. As the Internet evolved 
rapidly, new computational systems emerged to emulate commercial systems. Solomon has 
developed demand-initiated self-organizing commercial systems for both intermediated and
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dis-intermediated transactions that employ novel multivariate and multilateral negotiation 
models.
[0016] One niche of the automated commerce system lies in the aggregation of 
autonomous agents. Precisely how to combine pools of autonomous agents for wholesale

5 discounts presents an opportunity to remove a layer of distribution from commercial systems. 
This research stream is important because it provides clues as to how to develop coalitions of 
robotic agents for common purposes.
[0017] MRS models have been developed. The Nerd Herd is an example of an MRS 
using rule-based social behaviors for subsumption based foraging popularized by Brooks.

10 Second, the Alliance architecture developed a modular approach to robot team behavior that 
includes inter-robot communication. Such communication allows for emergent cooperation. 
An additional version of Alliance (L-Alliance) accommodates the learning aspect of robotic 
agents in order to achieve a form of adaptation.
[0018] Arkin developed a “multiagent schema-based robotic architecture” in which

15 team cooperation was modeled using a behavior-based approach without explicit inter-robot 
communication.
[0019] Dias and Stentz provide a market-based model for multirobotic coordination in 
which individual robots in a distributed environment negotiate with each other in order to 
agree upon a course of action. Such a model applies the contract-net protocol used with

20 software agents in a distributed network to the robotics context for operation of groups of 
autonomous robots in dynamic environments.
[0020] Finally, Solomon developed a hybrid MRS model with military and industrial 
applications in which a hierarchical leader-follower approach is implemented in a hybrid 
central-control and behavior-based control architecture.

25 [0021] Most MRSs possess several common traits, including mobility, intelligence,
communications, group behavior and specific functionality.
[0022] One critical aspect of robotic group behavior lies less in the value of
intelligence that in the importance of methods of aggregation. It is a key challenge of robotic 
systems of determine ways for robotic agents to synchronize, cooperate and collaborate and, 

30 in sum, to work together as a team. The emergence of dynamic coalitions of robotic groups 
is one of the most interesting and important areas of robotic research.
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[0023] The effort to achieve the development of complex MRSs that may emulate, 
and even transcend, emergent natural self-organizing processes, has become primarily a 
computation challenge that involves the need to create sophisticated AI architectures. AI 
systems have themselves emulated biological systems, with the advent, from Holland and 
Koza to the present, of genetic algorithms, genetic programming and evolutionary 
computation methods in order to solve complex problems. A related research stream 
involves A-NN, which has utilized GA in order to establish weight values of neural nodes. 
One main aim of the neural networks is to develop self-configuring and self-organizing 
learning systems for complex problem solving. This is useful in real time collective robotics 
situations in which rapid adaptation to a changing environment is necessary.
[0024] The development of hybrid AI technologies that synthesize various methods 
for specified problem solving would provide a robust and successful option in the computer 
scientist’s arsenal of weapons that may be useful for the development of sophisticated MRS 
architectures.

BRIEF SUMMARY OF THE INVENTION
[0025] The present inventions involve multi robotic systems, multi agent systems, 
collective robotics, artificial group behaviors, aggregation of robotic agents, coalition 
formation, dynamic coalitions, self-organization of robotic agents, emergent behavior of 
intelligent agents, cooperation of intelligent agents, multi agent learning, problem solving 
between conflicting intelligent agents, artificial intelligence, artificial neural networks and 
multi robotic operating systems.
[0026] Multi-robotic systems are complex networks that facilitate the interaction 
between autonomous robotic agents according to specific rules of behavior in order to 
perform a specific function or combination of functions. The present invention describes a 
system for multiple mobile robotic behavior by applying the logic of advanced computer 
science, in particular artificial intelligence (AI), with advanced robotic electronics and 
mechanics. The focus here is on artificial robotic collectives. So far very little research has 
been developed on the group behavior aspects of robotic societies as they plan, and then 
achieve, a coordinated goal.
[0027] There are several layers of any such collective robotic system, including (1) 
the computation, electrical and mechanical hardware of each autonomous robot unit, (2) a
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hardware network layer that links the individual robots together with wireless 
communications, (3) a metacomputing layer (that performs complex memory, database and 
computation analysis functions) in a node to node distributed computing model, (4) an omni- 
nodal artificial neural network (A-NN) layer for distributed AI, (5) an evolutionary A-NN 

5 layer -  driven by genetic algorithms and genetic programming -  for adaptive group learning 
in order to develop real-time cellular automata (CA) based simulations to seek optimal 
system solutions, (6) an OS layer and (7) a layer for specific functional applications.
[0028] The present invention describes a sophisticated MRS that is dynamic, 
interactive and evolving, adaptive to its environment and capable of exhibiting emergent

10 behavior. The system is designed as a hybrid of behavior-based and central planning control 
processes in a distributed network environment. By decentralizing numerous functions in a 
distributed architecture model, groups of autonomous robotic agents can learn together, make 
group decisions together (cooperatively and competitively), negotiate and solve problems 
together, congregate together in various sub-sets and re-configure in non-overlapping sub- 

15 groups. Using these unique approaches, autonomous robotic agents can form and reform into 
various configurations of groups in a self-organized way interacting with each other and with 
the environment in order to achieve pre-programmed, or evolved, goal parameters.
[0029] Artificial intelligence (AI) is used in a number of MRS processes, including 
individual robot learning and decision making using genetic algorithms (GAs), genetic

20 programming (GP) and other evolutionary computation (EC) approaches as well as group 
robotic agents that uses A-NN and hybrid evolutionary A-NN approaches (including GA, GP, 
FL, etc.) that provide tools for adaptive collective learning and decision making. The use of 
both individual agent and group learning tools are important because though the collective 
resources are far greater, when the system defaults to behavior-based biases, for instance, in 

25 situations with diminished computation resources, it is necessary for the individual robotic 
agents to have the tools to maintain autonomy. By building on the lower layers of behaviors 
of reactive approaches, a more complex MRS can evolve beyond ant society emulation.
[0030] In practical terms, MRS operation in unknown environments presents
numerous challenges and problems to solve. In the absence of a centralized “mission 

30 control” station to solve all the problems a robotic system may encounter, there must be a 
number of fall back system modes in order for the mission to be successful, which leads to a 
hierarchy of system structures. These system modes are dependent on computation

6
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resources, communications resources, levels of robotic agent autonomy, levels of learning 
and levels of group behavior.
[0031] In earlier multirobotic systems, a relatively simple architecture would consist 
of a leader robot with various followers in a hierarchy. The leader possesses increased

5 autonomy and orders the followers (super-drones). In this model, pre-selected squadrons are 
formed, the control for which can be manually intervened by human interaction processes 
such as a video feed for mission objective alteration. Reprogrammable orders and priorities 
can be uploaded at any time.
[0032] In one embodiment, supplementary external computation resources can be

10 kept outside of the MRS and fed in as needed by satellite. Alternatively, though computation 
is performed externally to the MRS, analytical results can be used to control the system. In 
addition, reporting on agent behavior can be provided to an off-site blackboard so as to unify 
control at a central command center.
[0033] As the system and its agents gain autonomy, increased capacities are brought 

15 in, such as computation power, communication bandwidth and AI capabilities. Still, only
reactive behavior-based autonomous robotic agent interaction approaches would yield a 
relatively simple system that appears to generate group behavior but merely mimics 
collective actions because of the outcome of interactions between autonomous agents. The 
system in this mode is merely semi-autonomous, which reflects its resource limits.

20 [0034] As the MRS system is linked together in a distributed network of autonomous
robotic agents that employ powerful computation resources and AI processes, the system can 
automatically “think” like a group and constantly reconfigure to the best available situation 
while interacting with and adapting to its environment.
[0035] It is therefore valuable that the system, though using a hybrid architecture,

25 employ a number of distinct embodiments that accommodate changes and that automatically
default to the most complex task achievable.
Hybrid MRS Architecture with Distributed Resource Management and Command Structure
[0036] A pure behavior-based reactive MRS architecture has advantages of local 
control and emergent behavior but disadvantages of the inability to control large groups in

30 complex adaptive environments. On the other hand, a central deliberative MRS control 
architecture has the ability to develop large self-organizing interactive systems and sub-
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systems but has the limits of being cumbersome and dependent on substantial computation 
resources. What is needed in order to build and operate a complex and high performance 
MRS is a hybrid architecture. In effect, the MRS architecture is a complex, continuously 
reconfiguring, operating system that links together robotic agents with computation, 
communications and software subsystems. Such a system must be modular (so that upgrades 
in a subsystem can be seamlessly performed), scalable (so that nodes can be added or 
removed) and reconfigurable. The system uses mobile software program code that provides 
inputs and outputs to robot machine agents. The “Harness” dynamic reconfigurable 
metacomputing model is a pioneer for this mobile self-organizing MRS hybrid approach 
because it continuously seeks to re-route the system to the optimal computation and 
communication pathways.
[0037] On a lower level, each robotic machine unit has sensors, actuators, 
microprocessors, communication receivers and transmitters, power supply, a specific 
functionality and (system and applications) software. However, when they are linked 
together, the opportunity exists for the MRS specific mobile robotic unit sensors to be 
organized into a network for collective data acquisition. The group’s collective computation 
resources can analyze the sensor data. In addition, the group of mobile robotic agents can use 
complex AI induced learning processes to make group decisions, even in the face of noisy, 
error-prone and conflicting data streams. By maximizing the efficiency of the available 
group MRS resources, intelligent group behavior can emerge.
[0038] The aggregation of MRAs into subgroups can occur, further reconfiguring in 
complex ways in dynamic and changing environments. By learning and working as a group, 
specific autonomous agents are altruistic and may be sacrificed for the greater whole if it is 
necessary in a specific critical operation. Further, specific sub-groups may conflict and split 
the herd in order to achieve different objectives. The convergence of technologies that allows 
teams of autonomous MRAs to work together -  computation resources and reconfiguration, 
communications bandwidth capacity and complex system software — make possible a 
revolution that emulates how groups of humans think and behave.
[0039] In order to make this technology convergence operability possible, it is 
necessary to develop a distinctive hybrid MRS architecture for a distributed self-organizing 
system. Such a hybrid system accommodates lower-level bottom-up reactive modular 
behavior-based approaches as well as the use of sophisticated hybrid AI resources (D-AI, A-

8
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NN, GA, GP, etc.) that work in a distributed system for group learning processes applied to 
complex decision processes, optimal simulation and collective robotics actions in dynamic 
environments. Such a hybrid model allows for adaptation in uncertain environments while 
also being able to carry out initial, and evolving, program objectives.

5 [0040] If one compares how animals work in groups we see a resemblance to our
system. Though specific animals have sensory data, memory, navigation, data analysis, 
decision-making and action sub-system abilities, as a group collectives of animals can 
achieve marked performance improvements because they have more data and analytical 
capacities and the integration of successful actions that increase the probabilities of winning

10 at foraging for food or defending against attacks. Why, then, cannot an MRS be developed 
that emulates, and even transcends, the performance of the animal (and insect) group model?
[0041] Historically, one of the main problems in building such an intelligent MRS of 
autonomous self-organizing MRAs has been computer resource constraints. There is the 
limit, not only of computer capacity, but also time, constraints. A huge amount of data must

15 be processed in a short time while the MRS is operational; in essence, the system must
compute on the fly as it gathers and understands data and decides what to do and then how to 
act as a group. There are practical solutions to these resource constraint problems. First, the 
application of Grid computing models provides an appropriate distributed model for 
maximizing computation capacity by sharing resources among MRAs in real-time. This

20 model can be scalable so that new MRAs can be added as needed even if others are
subtracted as the mission requires. In fact, each agent can be re-tooled and upgraded in each 
reuse of the modular system.
[0042] Second, multiple communications topologies can be used to re-route data 
streams to the most efficient use within the distributed system, including using advanced

25 caching techniques for optimal collective effect. Finally, AI software can be employed for 
learning, negotiation, decision and simulation of complex collective behaviors. The system 
then determines, while it is mobile, what to do and then acts as a team to cooperatively 
achieve the obj ective. By overcoming the resource constraints with collective action, an 
intelligent MRS emerges.

30 [0043] The present system is therefore far more advanced than previous MAS
approaches that seek to emulate the behavior of groups of simple insects because our system 
is endowed, not only with autonomous agent intelligence, but with collective group
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intelligence that transcends simple group behaviors. It is clear, then, that in order to develop 
such an advanced MRS, hybrid or meta-architectures must be employed that combine both 
local and global aspects.
Towards a Hybrid MRS AI Model: Distributed Problem Solving, Integrated Group Learning, 
Decision Processes and Dynamic Optimization Simulations with Cellular Automata
[0044] AI has emerged in the past generation as a valuable tool for solving complex 
problems. Genetic algorithms, developed by Holland and others, are a problem solving 
method to evolve, through reproduction, crossover and mutation techniques, algorithms. 
Genetic programming and other evolutionary computation approaches seek to solve different 
domains of problems. These complex strategies seek to emulate natural evolution processes 
so as to find the fittest, most efficient or optimal solutions.
[0045] The development of artificial neural networks (A-NN) was initially intended 
to emulate brain function. Referred to as connectionism, A-NN uses GA and FL (soft 
computing) techniques to map out, train and reconfigure a network of nodes for solving 
problems. By using an adaptive network architecture topology, the A-NN system can 
optimize adaptation to its environment. By training the network over distributed groups of 
agent nodes, the A-NN can learn. Evolutionary A-NN (E-A-NN), or neurevolution, is useful 
for reinforcement learning. A-NN’s work by using genetic algorithms to adapt input features, 
learning rules and connection weights. One of the most effective applications for A-NN is 
nonlinear statistical models such as pattern recognition. A-NN’s leam by altering synaptic 
weights; synaptic weight variables change by using fuzzy logic techniques to assess 
probabilities and thresholds. Bayesian networks use hypotheses as intermediaries between 
data and predictions to make probability-based estimates of solutions. Hopfield networks are 
used to remember an earlier network configuration and to revert to an old network when 
noisy data limits continuing network development.
[0046] The present invention uses a hybrid approach to AI that combines GA and GP
with A-NN and D-AI architectures. The combination of evolutionary computation 
approaches with distributed neurocomputing models produces a system that constantly 
rewires itself as the system is reconfigured. This approach is necessary because finite 
computation resources need to be maximized even while the distributed mobile MRS 
changes. Not only is this scheme scalable but increased computation capacity can be 
provided on demand if needed by specific under used MRAs. Such a hybrid AI architecture
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is best suited for learning by groups in a distributed network as well as for optimal adaptation 
to dynamic environments.
[0047] Hybrid AI approaches can be useful when solving complex problems. Two 
main problem solving models involve either cooperative (altruistic) or conflict (self- 
interested) oriented agent behavior. One main computational challenge that involves MRS is 
the distributed problem solving that requires negotiation among conflicting autonomous 
agents.
[0048] Conflicting MRAs use AI approaches to negotiate a settlement so as to solve 
complex multilateral disagreements. One way for groups to solve problems in a conflicted 
MRS is by finding proper matches for shared common interests, thereby focusing on the 
limited remaining variables and disagreements. This pruning process can settle an issue 
either by pre-determined (or changing) rules or by a vote between involved agents. In this 
way teams of MRAs can compete for effective solutions. Another method to find solutions in 
conflicted MAS situations is to set up a competition for the strongest strategies according to 
agreed upon rules. Finally, an agent can persuade other agents to its position.
[0049] All of these models involve inter-agent collaboration for complex group 
problem solving. The resolution of competing rival MRAs conflicts result in agreement 
about an optimal solution. Through conflict and competition, not only is common ground 
sought, but a winning algorithm solution is determined for complex problems. This problem 
solving negotiation approach is useful for organizing heterogeneous MRAs for common 
objectives.
[0050] How are negotiations between MRAs in a MRS processed? Autonomous 
robotic agents use complex decision processes that ultimately affect group behavior. 
Decisions can be made by either individual agents or by groups of agents. Rules are used to 
prioritize specific possible choices over others. Upon achievement of a specific threshold, a 
decision process yields a resulting choice of possible options. Once a threshold is achieved, a 
plan of action can be implemented.
[0051] Since it is important to configure group decision processes for MRS problem­
solving, a range of decision choice constraints present the lower and upper bounds of 
potential optimal solutions. Further, these parameters are constantly shifting in dynamic 
environments. Hence, methods need to be devised to find the shortest path to perform 
specific tasks. One way to do this is to perform specific tasks. One way to do this is to use

11
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statistical weighting to prioritize problems and solution possibilities. In the context of 
complex changing environments, an MRS must simultaneously work on solving numerous 
constantly changing problems. The Markov decision process makes decisions by prioritizing 
possible choice as measured by evolving values criteria.

5 [0052] MRS action starts with a plan. By mapping the parameters of group action
plans, we can model the optimal configuration or allocate the most efficient resources.
Decision logic processes lead to identifying trade offs (parameters) between possible 
solutions that lead to an optimal problem solving choice. MRAs use computation 
optimization techniques to select optimal solutions to complex problems in uncertain

10 environments. By mapping various scenarios, using AI and decision processes in a 
distributed network, MRAs select the best plan to achieve objectives.
[0053] MRSs use advanced hybrid AI methods in order to achieve optimal grouping 
patterns of behavior. Unlike purely computational MASs, a MRS have physical dimension 
and motion in space. These physical and geometric realities about the practical operations of

15 MRSs involve the need to organize spatial interactions and movements. It is useful to model 
these MRA movements before actually performing specific maneuvers primarily through the 
use of simulations.
[0054] Cellular automata (CA) models provide an important tool to simulate the 
changing movements of MRAs in an MRS. By using AI approaches, each robot is

20 represented as a cell in a larger system. Cells can interact with neighbor cells in the
neighborhood of a CA system, with two dimensional, three dimensional or four dimensional 
models representing the change in cellular states.
[0055] The results of combinatorial optimization approaches to seek the best solutions 
to solve problems can be represented by CA simulations and, thereby, tested, before actually

25 implementing these decision choices. By modeling group behavior in real time, the MRS 
solves problems and can seek improved solutions that can capture subtle contingencies in 
complex operational situations. MAS swarms are tested in particle simulations using CA 
models, but MRSs have not applied these important CA driven simulations for real geometric 
behaviors. Therefore, the present invention uses simulations in a dynamic, rather than merely

30 static, way, for real time testing. In the simulation, virtual robots are provided the valuable 
advantage of trial and error of potentialities of activity so as to learn from complex 
contingencies, in order to optimize the chances for mission success.
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Swarms, Flocks, MRS Aggregation and the Formation and Reconfiguration of Dynamic 
Coalitions____________ _________________________________________ ____________
[0056] Nature provides analogies for computer scientists in the contexts of AI and 
group robotics. In the case of AI, GAs and GPs seek to emulate natural selection by breeding 
the best fit problem-solving programs using principles of sexual reproduction, pruning and 
random mutation. In the case of robotic group behavior, scientists have sought to emulate 
insect (ant and bee) social behaviors in order to understand how compolex patterns emerge 
from simple individuals. How can MRSs be developed that have the self-organizing 
properties of insects? The two main behaviors that have intrigued observers are foraging 
(food location search and procurement) and swarming behaviors.
[0057] Scientists have discovered that ants use pheromones (chemicals that have an 
odor to attract others) to develop complex foraging behaviors. By laying down pheromones, 
which, though temporary, can be increasingly intense if compounded, ants provide a natural 
reinforcement mechanism (stigmation) with positive feedback. This positive reinforcement 
learning mechanism suggests a self-organizing system.
[0058] There are other ways for insects to communicate with each other. Some ants 
and bees have developed ways of communicating with their nearest neighbors about food 
sources, for instance, to get help with or altruistically share information with the group. This 
nearest neighbor communication approach, which is primarily sense based, is key to the 
formation of flocking, herding and schooling behaviors in animals and fish.
[0059] In the case of bees or ants, there may be specialists that perform specific 
functions in the hive or nest in order for the whole organization to function more smoothly. 
This division of labor has evolved for millions of years as an efficient social system.
[0060] Insects may communicate with each other indirectly. The process of 
stigmation operates with an insect affecting, or changing, the environment, which then 
catalyzes other insect behavior. The use of pheromones illustrates this process because the 
ants lay down an attracting chemical that may be acted upon by others in a limited time.
[0061] Animal and insect group behaviors emerge at the local level. Though insects 
are not intelligent in some ways, their complex group behaviors suggest that they have 
evolved social intelligence. By working in groups, they have defended against predators and 
survived in hostile environments. But here are limits to this kind of swarm intelligence.
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[0062] Though they have an initiator, most swarm or flocking behaviors do not have a 
single persistent leader. Instead, such social behaviors focus on local and reactive 
interactions.
[0063] Flocking is a case in point. Each bird in a flock has limited information about 
flockmates. Instead, they have neighbors they provide local information on direction and 
speed. The big challenge is to avoid collision with neighbors even as they signal trajectory 
and velocity data through their behavior. Consequently, both attractive and repulsive forces 
are involving in flocking behaviors.
[0064] There are, then, simple flocking rules that are useful to MRS designers 
because they illustrate local reactive behaviors: (A) Fly at a steady state speed of neighbors, 
(B) Tend to the center of the flock and (C) Avoid collisions with neighbors. This is similar to 
driving on highways because we have limited information (visibility) restricted primarily to 
our nearest neighbors, with which we seek to avoid collision but also maintain a consistent 
pace. Flocking, like herding, school and swarm behaviors, have evolved to allow groups of 
insects, birds, fish or animals to move in a hostile environment while avoiding peripheral 
members from being picked off by predators. In nation, then, avoidance of obstacles, 
neighbors and predators has become integrated into the rules of survival that social group 
behaviors maintain.
[0065] How does a swarm form? An event will stimulate an individual insect to 
attract neighbors to the swarm activity. Though any individual can be a leader that initiates 
action, the recruitment of other individuals through attracting the cooperation of similarly 
interested neighbors is key to the process because these individuals then respond by attracting 
more neighbors, and so on. Thus, any individual can initiate a swarm or flock; this initiation 
is a sort of initial request to procure resources for a specific (defensive or offensive) function 
or activity. Rather than a centralized mission control issuing orders to the troops, specific 
decentralized individuals can trigger group activity in a sort of local reactive chain reaction 
process that has the effect of overwhelming an enemy. In some cases, specialists alone, such 
as soldier ants, may swarm for an attack process.
[0066] Insect and animal social behaviors are important to understanding complex 
social processes involving simple individuals. Attempts have been made to emulate 
biological system swarm intelligence for development of artificial systems of robots. For
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instance, Arkin’s (1998) use of Brooks’ simple modular reactive robot for group behavior 
shows an attempt to model complex behaviors from simple robots.
Beyond Flocking: MRS Aggregation and the Formation and Reconfiguration of Dynamic 
Coalitions ______________________________ .—  --------------- —---------------------------

5 [0067] The present invention goes beyond these interesting biological emulations.
Because our system is layered, with simpler default modes of operation, we will use simple 
swarm behaviors in an MRS that employ reactive local interactions. But the main objective 
is development of complex aggregated MRS systems that are capable of intelligent social 
behavior as well as the operation of dynamic coalitions. Whereas the simpler group 

10 behaviors have severely limited computation and communication resources in a
homogeneous system, the present invention does not. Simple swarm behaviors have 
anonymous homogeneous simple members (in uniform roles) with primitive local 
communication, minimal computation capacity and the limits of reactive behaviors using a 
narrow set of rules for learning and action. The limits of this biologically inspired system can 

15 be improved by development of an advanced MRS that exhibits social intelligence. Our
system has autonomous individual MRAs with highly advanced computation, AI and 
communications capabilities, complex learning and simulation functions, specialization 
features and team behaviors in a heterogeneous system. In short, the present invention 
emulates human social behavior by using artificially thinking mobile robotic agents for a 

20 range of functions.
[0068] The problem of how to aggregate objects is an important one in computer 
science. Methods of aggregation involve collecting together disjoint sets for an organized 
assembly. Combinatorial optimization is the mathematical field concerned with seeking 
solutions to aggregation problems. Aggregation is useful for mass pooling of customers with

25 common interests for wholesale discounts. Similarly, combinatorial auctions are a useful 
commercial structure to enable parties to acquire bundles of items for optimum benefit.
[0069] For the purposes of the present invention, aggregation is important as a 
process for organizing groups of MRAs within an MRS. We are not only interested in how 
groups of intelligent robotic agents form, but also the process by which groups break into

30 subgroups and reform. Intelligent aggregation of MRAs involves automatic selection,
formation, combination, reformation and dissipation of groups. Each new set of intelligent 
agents represents a new configuration. Emergent behavior of the MRS leads to a complex
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self-organizing system that never settles on an equilibrium because it is constantly changing. 
Finally, unlike other pure computational contexts for aggregation, the application in an MRS 
involves the geometry of space and extension and the physics and mechanics of motion.
[0070] The autonomy of intelligent agents leads to the opportunity for individual

5 specialization. Whether in biological or economic systems, specialization affords the 
optimization of teams because it establishes an efficiency enhancing division of labor.
Groups of MRA specialists can work together in an artificial system for increased benefit to 
the objectives of the whole group. The existence of specialization also makes possible the 
interactions of sets of agents.

10 [0071] Aggregation is a process of grouping entities together. One useful way to
model groups is with game theory. As applied to an MRS, game theoretic models have a 
geometric dimension. Game theoretic approaches to modeling an MRS is useful particularly 
because they can be multi-phasal and interactive. Not only are MRA interactions nicely 
modeled but complex interactions between sub-groups can be more optimally represented as 

15 well as interactions with the environment. Game theory can model cooperating agent
behavior as well as conflicting or heterogeneous behaviors. An example of a heuristic for 
MRS game theoretic modeling parallels chess playing maneuvers, with openings, gambits 
and traps providing MRA models for the inter-operation of artificial societies. Robotic 
agents work together to develop winning game strategies for achieving goals or solving 

20 problems.
[0072] One of the aims of the present invention is to develop methods for MRAs to 
constantly develop shifting groups. We are interested in discovering how intelligent 
autonomous robotic agents form and reform into dynamic coalitions of collectives. 
Understanding precisely how sub-groups of MRAs organize, self-configure, reconstitute,

25 adapt to their environment and regroup is the key to understanding complex emergent group 
behavior in intelligent self-organizing systems.
[0073] With severe resource constraints, mobile agents will tend to behave according 
to simple rules inspired from biological systems, with local and reactive control. But 
endowed with sufficient computation and communications resources, an intelligent MRS will

30 be able to perform more effectively. One of the areas of improvement in the operation of 
groups of MRSs lies in establishing methods and processes for dynamic coalition behavior.
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[0074] Multiple squads containing specialized MRAs can work together by sharing
sensor data, data analysis, computation, communications and decision processes. Such 
multiple squads can form alliances and temporary coalitions for specific missions with 
numerous applications to industry. When group resources are restricted, specific squads can 

5 operate autonomously with limited information and still perform its objectives. Further, 
higher priority squads can get more resources at crucial times. Squads can reconstitute by 
taking resources from the larger group for continuous dynamic coalition reformation so as to 
more optimally adapt to changing environments. The existence of multiple micro-coalitions 
can be better suited to satisfying multiple goals simultaneously and thus increase the chances 

10 of a mission success.
[0075] Squads of MRAs break off from larger groups in an MRS. The squads can
share the larger computation, communication and sensor resources and decision processes of 
the larger group. In effect, the squads operate as teams of nodes in a neural net that 
constantly reconfigures on the fly. Since some of the sensors in some of the squads are 

15 exogenous to each team, the squads have access to data streams beyond any limited team. 
Sub-teams are synchronized into the distributed network using hybrid AI approaches. 
Nevertheless, each squad, and its reconfiguring teammates, can work independently with 
local behaviors. In addition, differences between agents in a squad, for example, specialists 
or different “personalities,” can create complexity in squad behavior within the practical 

20 constraints of their programming, as they inter-relate in different configurations. Squads self­
select into various coalition configurations, but during complex missions, new squads can 
pick up stragglers from previous damaged squads. Similarly, squads can merge in instances 
where combined strength is needed to solve a problem. Robotic agent nodes can be added or 
subtracted as the system continuously reconfigures to achieve optimum success.

25 [0076] Different methods are employed in order to realize group MRA self­
organization processes. In one important sense, game-theoretic and cellular automata 
simulations are useful in order for collectives in an MRS to map out and achieve complex 
plans for problem solving. By employing these processes within AI driven computation, 
intelligent MRAs work together to optimize complex processes in order to achieve mission 

30 success. The opportunity to simulate these processes of constant re-grouping for dynamic 
coalitions of MRAs allows a new generation of applications of MRS social behaviors to be 
possible. In this way, among others, the present system far surpasses prior approaches to 
emulating biological social behaviors. Our system allows intelligent MRAs to constantly
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shift in dynamic coalitions that are best suited for environmental interaction. It is precisely 
the continuously changing environment that requires development of a complex system that 
makes possible continuous reorganization.
Innovations and Advantages of the Present System

5 [0077] The present system has a number of innovations and advantages over earlier
inventions. These innovations involve (1) multi-robotic system architecture, (2) computation 
resource structure, dynamics and allocation, (3) AI dynamics, (4) group negotiation, learning 
and decision structures and processes, (5) intelligent social behavior involving mobile robots 
and (6) dynamic coalitions of MRAs.

10 [0078] The present invention utilizes a novel hybrid MRS architecture that
dynamically adjusts from manual operation of groups of MRAs to wholly automated socially 
intelligent MRAs in order to accommodate severe resource restrictions as well as extremely 
complex behaviors. By defaulting to the most complex appropriate resource level, the system 
optimally adjusts to environmental conditions. For instance, very small MRAs may be

15 resource constrained and would thereby employ simpler local reactive behavioral rules. The 
architecture of the present system is also both modular and scalable so that growth or 
shrinkage will not affect performance.
[0079] The present system uses a distributed wireless grid supercomputing model.
This approach allows the sharing of computation resources, including memory, database

20 storage and data analysis capacity, thereby far extending previous constraints. In addition, 
this distributed model is optimal for equal node parallel processing within a collective. 
Computation processing speeds of dozens of teraops could be maintained in this system, 
thereby providing ample resources for complex group behaviors. The present system also 
uses advanced routing procedures to maximize the most efficient geodesic heuristics.

25 [0080] The present system employs a novel use of a MAS within a MRS in order to
communicate, negotiate, control and organize group behaviors. Intelligent mobile software 
agents (IMSAs) are the analytical representatives that perform critical internal functions in 
the robotic system. In addition, intelligent negotiation agents (INAs) represent a core and 
innovative aspect of the present system as a vehicle for MRAs to interact and solve problems.

30 [0081] The present invention uses a dynamic reconfigurable evolutionary A-NN that
provides optimal adaptation to the changing environments of an intelligent MRS. The A-NN
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uses hybrid AI techniques, including combinations of GA, GP, FL and EC. As nodes are 
added or subtracted to the network, the A-NN is automatically rewired for maximum 
efficiency. The system uses feedback loops to learn. The A-NN is useful to train the system 
in group learning processes. These applications to a mobile and dynamic MRS are novel.

5 The use of comiectionism (neural nets) in a MAS and a MRS is a huge leap from earlier 
systems.
[0082] In order for the present system to learn, it employs FL processes that use 
probabilities to make group decisions by selecting the best available option among a range of 
contestant options. The system utilizes combinatorial optimization approaches to select the

10 best solution to solve problems. Particularly in conflicting situations between agents, there is 
a need to negotiate a settlement by developing a method of winner determination. The 
system employs novel approaches to asymmetric problem-solving by using multi-lateral 
negotiation methods.
[0083] The present invention uses game theoretic approaches and cellular automata

15 schemas in order to simulate tactical system opportunities for an MRS in novel ways. By
using real-time CA and GT simulations, an MRS can automatically select an optimal 
problem-solving path and, hence, model complex interaction dynamics among MRAs and 
between MRAs and the environment. Given limited information in challenging environments 
with resource constraints, the use of simulation modeling for action planning and contingency

20 scenario testing is necessary to achieve highly intelligent MRS behavior.
[0084] The present system is novel because it is heterogeneous. The MRS employs 
specialty robots for diverse functions. Some MRAs may have multiple functions, alternative 
functions or work in teams with complementary functions. This approach increases 
efficiency of task execution because it promotes an automated division of labor in an MRS.

25 [0085] Despite their specialty functions, any agent can initiate group behaviors. The
attraction of MRAs to collectives can be demand-initiated in a novel implementation of group 
behavior in an MRS. This approach enhances system performance. In one implementation, 
stronger data inputs may constitute invitations to act beyond a specific threshold and thereby 
initiate MRA grouping behaviors. The present system uses novel group attraction initiation 

30 methods.
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[0086] The present system synthesizes local control with deliberative planning. This 
hybrid architecture is novel and is possible only with the unique convergence of advanced 
computation technologies disclosed herein.
[0087] The present system uses novel approaches to dynamic coalition formation. 
Using these approaches, the MRS constantly reconfigures its structure and dynamics in order 
to adapt to environmental changes. This more effective adaptation provides increased speed, 
precision, efficiency and effectiveness in mission critical situations.
[0088] By applying distributed artificial intelligence approaches, the present system 
develops a way for groups of robotic agents to make decisions in cooperative and in 
conflicting situations in real time. This is a novel and important advance over earlier 
systems.
[0089] The present system implements novel MRS approaches involving tactical 
cooperating teams of MRAs. This sophisticated use of the system transcends earlier notions 
of artificial group intelligence.
[0090] Why are groups of robots important? Traditionally, robot groups allow an 
increased speed to do a task. Like in nature, groups are increasingly reliable since some may 
fail but the group still finishes the task. In addition, using robot groups to perform tasks can 
be more flexible than only individual robots. The present system offers higher performance 
benchmarks for these traditional advantages.
[0091] Since the present system uses multiple hybrid architectures, at the system and 
AI levels, there are nontrivial advantages over earlier systems.
[0092] The present system most efficiently implements complex group behavior in an 
artificial robotic system. For example, unlike earlier artificial systems that seek to emulate 
insect behaviors, the present invention seeks to emulate, and transcend, complex human 
group judgment to develop a true social intelligence. Consequently, the present invention 
goes beyond robotic systems that focus primarily on local control of the nearest neighbor and 
reactive behaviors.
[0093] The use of coordinated, cooperative and reconfiguring squads in dynamic 
coalitions in the present system provides numerous novel and useful advantages.
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[0094] Finally, the present system is useful for a broad range of important 
applications, from manufacturing to toxic clean-up and from remote exploration to traffic 
coordination. The sheer breadth of collective robotic applications, to industry and beyond, 
using the present system suggests a range of uses that could provide revolutionary 
implications.
Applications of the Present Invention
[0095] There are numerous applications of the present system. Robots can have 
specific functions for specialized purposes. One robot can clean, while another can dry. But 
specialized robots can have particularly high utility as they function in teams. While specific 
purpose robots are useful, multiple function robots are increasingly productive. Multiple 
function robots can switch roles or change forms as needed to complete complex tasks. The 
more tasks a robot can do because of its multiple specialties, the more plasticity and 
flexibility it has.
[0096] Multi-functional teams of robots can perform more tasks than specific 
specialty robots. The more tasks that robots can do, the more plasticity of tasks a team of 
robots can perform because of the efficiency benefits of the maximized division of labor.
[0097] The following is an extensive (but not exhaustive) list of applications of 
groups of robots that the present invention advances.
Manufacturing
[0098] The present system enhances factory production, assembly and distribution 
processes. Methods for groups of robots to work together may greatly accelerate production 
techniques. For instance, by using groups of multi-functional autonomous robots, a host 
products can be produced faster, more efficiently and cheaper than with earlier methods.
[0099] Regarding the factory assembly process, the novel use of groups of 
autonomous mobile robots may reshape the very idea of an assembly line because new 
interactive processes, reflecting an efficient modular workspace, will reconfigure approaches 
to activities in which parts are combined to a whole. The application of self-organized 
groups of multifunctional robotic systems to manufacturing assembly can promote just-in- 
time production processes and lean inventory to save time and increase efficiency.

21



5

10

15

20

25

30

WO 2004/018158 PCT/US2003/026764

[0100] The distribution function of factories, such as loading and unloading, can be 
improved with teams of autonomous robots working together. Such a system can replace 
routine labor practices.
Construction and Repair of Structures and Roads
[0101] Self-organizing teams of autonomous robots can build and repair roads and 
structures. From laying track or pipe to electrical, plumbing, framing and roofing, an MRS 
can be useful in performing laborious time-intensive routine structure building construction 
functions. Similarly, MRAs can be useful in the repair of buildings and streets. These novel 
MRA processes can save time and reduce costs of building construction as well as road work 
and repair. In one practical application, pot holes can be automatically detected and repaired 
by teams of MRAs.
Medical Applications: Medi-bots
[0102] There are two categories of application of the present invention to the medical 
field. First, groups of medical robots (medi-bots) can be used in critical field situations to 
stabilize a patient. Autonomous medi-bots work together to (a) diagnose a patient’s trauma, 
(b) resuscitate, via electronic pulse or CPR, a patient whose cardiac or pulmonary functions 
have ceased, (c) cauterize wounds to stop (or minimize) bleeding, (d) apply an IV for 
intravenous solution transmission in order to replace vital fluids and (e) call for more medical 
resources by providing a precise physical location position. Multiple medi-bots can much 
more efficiently rescue and stabilize patients, thereby saving lives.
[0103] Second, groups of medi-bot can assist doctors in clinical situations by 
performing functions typically attributed to nurses and assistants. Such medi-bots can 
monitor patient functions during procedures as well as actively support the surgeon or dentist 
so as to save time. These medi-bots can also supply expertise in critical operating room 
environments. In critical emergency room situations, where time and precision can make a 
difference, medi-bots can save lives.
Reconnaissance and Surveillance
[0104] A big category of use of the present system lies in reconnaissance and 
surveillance. Multiple autonomous robots working as a team are optimal for reconnaissance 
and surveillance activities. These MRAs can transmit real-time vision and sound to off-site 
locations, typically via satellites or terrestrial communications systems.
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[0105] In one mode, the MRAs can be very small micro robots (more fully referenced 
below) that provide stealth advantages for reconnaissance and surveillance purposes.
[0106] In other embodiments, MRAs can be disguised as natural phenomena, such as 
animals, birds, insects, etc. for evasive and stealthy advantages. By emulating natural animal

5 behaviors, mission effectiveness can be maximized.
[0107] Finally, by using groups of MRAs, a more complete, more dynamic and more 
accurate view of the terrain being viewed can be maintained than with any other existing 
technology.
[0108] If captured, an MRA in this system can erase its programming and be rendered

10 a useless pile of sensors, while the remaining network nodes automatically reconfigure for
effective performance.
Search and Rescue
[0109] Including reconnaissance MRAs and medi-bots, teams of robotic agents can 
conduct search and rescue operations in difficult terrain that may be inhospitable to humans,

15 such as in extreme weather.
Toxic Clean-ups
[0110] Groups of MRAs can be used to perform complex clean-up operations that 
may be hazardous to humans. These clean-up categories include: (a) toxic waste dumps, (b) 
nuclear reactor cleaning, (c) oil spill events and (d) sewer cleaning.

20 [0111] MRAs can use self-organizing maps of a local terrain to devise plans to most
efficiently and safely provide toxic clean-up operations, thereby saving lives and protecting 
the environment.
Fire-Fighting
[0112] Using similar configurations and methods as used in toxic clean-up

25 applications of MRAs, an MRS can be used to fight fires. Ground MRAs can dig trenches 
and plot trajectories for the expanding fire territory, while aerial MRAs can drop fire 
retardant at tactical locations for optimal effect. As with toxic clean-ups, MRAs use self­
organizing mapping processes to assess the scope and dynamics of the full-motion fire 
situation. Fire-fighting MRAs can save lives and protect property. This application can be 

30 useful for forest fires, urban fires or industrial structure fires that require complex problem
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solving and decisive action. Medi-bots can be used in conjunction with these fire fighting 
applications for maximum benefits.
Mining
[0113] MRA teams can be very useful for mining minerals in remote locations.

5 Robots can identify the most promising locations to dig and then help with laborious digging 
and sifting tasks. Groups of MRAs can work faster and more efficiently than current 
automation processes, in part because they are mobile, autonomous and self-organizing.
Agriculture
[0114] Farming has enjoyed increased automation processes for generations so as to 

10 maximize production. Groups of MRAs can continue this automation evolution, particularly
in the planting and harvesting contexts in which greater care is required for specific crops 
such as fruit and vegetables. In general, MRAs replace the routine functions of migrant 
pickers.
Shin Hazards

15 [0115] Like toxic clean-ups, ships have a number of complex and dangerous
problems to solve. Because ships function as self-enclosed physical domains, MRAs can 
operate effectively on specific problems. Groups of MRAs can provide effective automated 
solutions to hazardous functions, thereby reducing risks and saving time and money.
Clearing Minefields

20 [0116] One main activity for MRAs involves demining. Groups of autonomous
robots can work together to either dis-assemble or explode mines that are discovered in a 
self-organized search process. In addition, disarming bombs can be a useful function for 
groups of MRAs.
Traffic Coordination

25 [0117] Groups of automated vehicles can use the present system for effective
operation. MRS vehicle categories may include cars, trucks, trains, aircraft and ships. In 
particular, cargo may be moved on various groups of autonomous vehicles for greater 
efficiency, timeliness and cost-benefit. Such traffic coordination systems may develop 
complex routing algorithms that emulate, and transcend, bird flocking or ant foraging 

30 behaviors.
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Elevator and Dam System Regulation
[0118] Systems of elevators can be better guided and coordinated by using 
autonomous group logic. Similarly, dams can be regulated more efficiently by using group 
logic processes of an MRS.

5 Weather Prediction
[0119] The present system is useful to organize groups of weather balloons or aircraft 
to gather and disseminate data. The MRS is ideally suited to complex adaptive environments 
such as detecting dangerous weather conditions such as tornados or hurricanes. Groups of 
self-organizing MRAs can more rapidly predict dramatic weather system changes.

10 [0120] In an active mode, MRAs can not only predict poor weather but can influence
its outcome. In a drought situation, MRAs can seed clouds to increase the likelihood of 
inducing rain. In an extreme case, MRAs can prevent tornadoes by influencing their 
movement very early in their development and changing the immediate environmental 
conditions. Only self-organizing groups of automated mobile robotic agents with specific 

15 functions -  such as warming cool air in limited areas so as to retard or minimize a turbulent 
cyclic force -  could execute this precisely or rapidly.
Satellites
[0121] Groups of satellites can work together to perform distinctive functions such as
optimally tracking moving objects by using the present system.

20 [0122] The present system can also be used to have groups of self-organized
autonomous MRAs repair or readjust a satellite remotely.
Underwater Applications
[0123] As with other remote domains, the present system can be used in underwater 
applications. Specifically, the underwater context can be used with other applications,

25 including surveillance, reconnaissance, search and rescuer and demining.
Remote and Space Exploration
[0124] The use of the present system for space and remote exploration is logical. By 
using teams of self-organizing MRAs, complex exploration activities can be routinely 
performed. This technology can be applied to underwater, extreme cold or deep space
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missions which are optimized for the flexibility and efficiency of the group behavior of 
mobile robotic vehicles. These vehicles can have multiple functions for the collection and 
analysis of local environmental data. In some situations, these MRAs can conduct covert 
operations during which they may need evasive programming capabilities.

5 Sentry Protective Services
[0125] Groups of MRAs can be used as an automated system of sentries for security 
protection purposes. Sentries can be used not only for surveillance but also for defensive 
uses in order to protect structures or personnel. Such MRA sentries detect and respond to 
invasive action by unauthorized personnel by tracking and evading the intruders and calling

10 for assistance. In a more aggressive mode, automated sentries can respond to invasive
behaviors by disarming and subduing unauthorized activities until the authorities can arrive.
Cinematography
[0126] The present system can be used by groups of MRAs that operate video or film 
cameras in order to capture dynamic movie scenes. Because the MRAs can be constantly

15 moving and can be both self-organizing and synchronized, an MRA can facilitate a new
generation of film-making techniques, particularly for the popular action sequences. While 
moving in synchronized or random ways, MRAs are well suited to capture moving scenes in 
distinctive cinemagraphic ways only possible in an MRS.
Commercial Laundry or Restaurant

20 [0127] Routine restaurant food preparation and delivery and commercial laundry
functions can be done by teams of MRAs. Working as a group of short order cooks, MRAs 
can produce more variety of recipes in a shorter time than professional chefs or waitresses. 
Similarly, a commercial laundry service can be optimized by using groups of MRAs to 
organize, clean and package clothes. One hour discount cleaning is now possible by using an 

25 MRS.
Micro-Robotics
[0128] One of the most exciting developments in robotics is the advent of small (fly­
sized) robots. But the smaller the robot the greater utility is derived from working in groups. 
Once in groups, micro-robots can become very useful much as ants or bees are successful in 

30 groups. A  number of group robotic applications involve the use of micro-robots. Given
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resource constraints of micro-robots, the group gains massive resource benefits while 
operating in a network using the present invention that make possible dramatic performance 
gains over merely a collection of unlinked autonomous robotic agents. These MRS micro- 
robotic networks could also be construed as very small scale integrated systems (VSSIS).
[0129] Generally, the smaller the micro-robotic agent, the simpler the system. Hence, 
some straightforward applications include surveillance and reconnaissance in which sensor 
data is transmitted for central use while the system is camouflaged as a natural phenomena 
(such as a real fly or spider).
[0130] Teams of self-organizing micro-robots utilizing local reactive operational 
behaviors can use traditional computer based group behavior that emulates biological system 
behaviors such as foraging or flocking. But the present system strives to go beyond these 
restrictive behaviors.
[0131] In one embodiment, disaggregated collectives of micro MRAs can form 
together into a larger composite robot exhibiting unified behavior. This is important so as to 
allow larger robots to disassemble into constituent (specialized) parts if necessary in order to 
evade a predator or disguise a maneuver.
[0132] hi another embodiment, micro MRAs using the present system could inspect 
and assemble micro-electronic systems or could inspect biological entities for abnormalities.
[0133] As microprocessors progress to ever smaller sizes and greater capabilities, the 
practical uses and possibilities for micro-robotics, particularly in self-organizing groups, 
increases dramatically.
Nanotechnology
[0134] A close relative of micro-robotics is nanotechnology. The use by nanorobots 
and nanoprobes of the present system is logical. The same argument and restrictions of 
microrobotics apply to molecular sized nanorobotics. Like microrobots, nanorobots can 
assemble into larger composites that themselves work together as autonomous groups.
[0135] Uses of nanorobots include surveillance and reconnaissance. But more 
fanciful uses include biological applications that include cleaning arteries by injecting a 
group of nano-MRAs into a patient’s blood stream. The nanorobots will go to the affected
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area, perform the operation internally and regroup for extraction. Nanorobots could also be 
used to identify and repair microelectronic abnormalities.
Expert Systems
[0136] Groups of anthropological MRA “androids” can work together to form

5 complex expert systems. Operating as consultants with autonomous opinions, robot expert 
groups can behave like specialist teammates to collect and analyze data, perform forecasting, 
develop alternative scenarios, make predictions and give advice in the form of reports. Such 
groups of expert consulting opinions can involve numerous substantive industry categories 
and topics, including optimal telecom and energy routing algorithms and economic, business 

10 industry and scientific analyses. The personalities, experience and learning processes of the 
android MRAs evolve. Taken together, such expert systems constitute a think tank. 
Ultimately, such a group of autonomous self-organizing robotic agents can form and reform 
coalitions of specialist experts similar to a sophisticated consulting firm. By applying 
evolutionary learning and combining various opinions, such complex systems can be creative 

15 and capable of original thinking approaches that far surpass chess playing supercomputers.

MRAs
[0137] MRAs can take numerous forms. Since there are numerous applications of the
present system in divergent industrial and technical contexts, it is appropriate to identify the 
structure and function of the variety of MRAs that can perform various jobs.

20 [0138] MRA vehicles can include various forms of aircraft, such as airplane, glider,
helicopter, balloon, blimp, satellite or spacecraft. MRAs can operate in water as ships, boats, 
submarines or hovercraft. On land, MRAs can be automobiles, trucks, farm equipment, 
mining equipment, factory equipment, etc. There may be entirely new forms of MRAs as 
well, such as remote exploration devices, anthropological androids, micro-robots intended to 

25 emulate insect appearances, nano-robots and so on. The range of sizes and forms of MRA 
are very broad.
[0139] What unites the MRAs in the present system are common processes that make
possible self-organizing group behavior of autonomous intelligent mobile robots. 
Nevertheless, the various specialized applications that are made possible by using the present 

30 system allow a broad range of important uses that endeavor to enhance the human condition
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by performing the riskiest, most remote, most complex, most routine and most important 
tasks imaginable.
[0140] Reference to the remaining portions of the specification, including the
drawings and claims, will realize other features and advantages of the present invention.

5 Further features and advantages of the present invention, as well as the structure and
operation of various embodiments of the present invention, are described in detail below with 
respect to accompanying drawings, like reference numbers indicate identical or functionally 
similar elements.
List of Acronyms:

10 MAS: Multi-agent system
MRS: Multi-robotic system
MRA: Mobile robotic agent
INA: Intelligent negotiation agent
IMSA: Intelligent mobile software agent

15 AI: Artificial intelligence
D-AI: Distributed artificial intelligence
A-NN: Artificial neural network
E-A-NN: Evolutionary artificial neural network
FL: Fuzzy logic

20 GA: Genetic algorithm
GP: Genetic programming
EC: Evolutionary computation
OS: Operating system
CA: Cellular automata

25 GT: Game theory
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[0141]
[0142]
MRA;

5 [0143]
[0144]
sensors;

BRIEF DESCRIPTION OF THE DRAWINGS 
Fig. 1 is a list of system layers;
Fig. 2. is a schematic diagram of a synthetic hybrid control system for an

Fig. 3 is a table of a dynamic database organization;
Fig. 4 is an illustration of three MRAs identifying MRA locations with

[0145] Fig. 5 is a diagram of an MRA assessing its environmental situation and
coordinating change in state;

10 [0146] Fig. 6 illustrates a diagram of a metacomputing model for distributed MRS in
which flexible mobile grid architecture is organized into dynamic clusters;
[0147] Fig. 7 is an illustration showing the sharing of computation resources among
MRA nodes in a wireless mobile MRS, including the efficient routing of database and 
analytical functions;

15 [0148] Fig. 8 is a diagram showing database coordination in a distributed MRS;
[0149] Fig. 9 is a diagram showing a dynamic distributed object relational database 
data flow process;
[0150] Fig. 10 is a diagram showing temporal objects in an object relational database 
management system;

20 [0151] Fig. 11 is a diagram showing mobile grid dynamics;
[0152] Fig. 12 is a diagram showing autonomous blackboards for MRAs;
[0153] Fig. 13 illustrates a diagram showing intelligent mobile software agents 
operations control in MRAs;
[0154] Fig. 14 is a flow chart showing MRA juvenile and adult training levels;

25 [0155] Fig. 15 is a diagram showing MRA attitude biases;
[0156] Fig. 16 is a flow diagram showing the learning and adaptation from
environmental interaction;
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[0157] Fig. 17 is a flow diagram showing the MRA training process;
[0158] Fig. 18 is a flow diagram showing reinforcement learning;
[0159] Fig. 19 is a flow diagram showing hybrid learning with time constraints;
[0160] Fig. 20 is an illustration of social learning in which MRAs learn from other

5 MRAs;

10

15

20

25

[0161] Fig. 21 is an illustration showing MRAs that teach other MRAs;
[0162] Fig. 22 is an illustration showing asymmetric MRA leadership and the
emergence of temporary hubs;
[0163] Fig. 23 is an illustration showing specialized learning in self-organizing teams;
[0164] Fig. 24 is an illustration showing automated specialization in which self­
organization by task division occurs for individual specialization;
[0165] Fig. 25 is a flow diagram showing a self-organizing map;
[0166] Fig. 26 is a flow diagram showing a genetic algorithm;
[0167] Fig. 27 is an illustration showing a binary genetic algorithm;
[0168] Fig. 28 is an illustration showing a genetic programming tree architecture;
[0169] Fig. 29 is an illustration showing parallel subpopulations fitness evaluation;
[0170] Fig. 30 is an illustration showing a two layer neural network;
[0171] Fig. 31 illustrates an artificial neural network connection weights;
[0172] Fig. 32 illustrates genetic programming in the calculation of initial weights;
[0173] Fig. 33 illustrates genetic programming applied to indeterministic artificial 
neural networks;
[0174] Fig. 34 is an illustration showing an evolutionary artificial network connection 
and node additions;
[0175] Fig. 35 illustrates evolutionary indeterministic artificial neural network feed 
forward progress;
[0176] Fig. 36 illustrates an evolutionary search for connection weights in an ANN;
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[0177] Fig. 37 is a flow diagram showing a fuzzy logic module;
[0178] Fig. 38 is an illustration of a neuro fuzzy controller with two input variables
and three rules;
[0179] Fig. 39 illustrates a five layer evolving fuzzy neural network;

5 [0180] Fig. 40 illustrates an adaptive network based fuzzy inference system;
[0181] Fig. 41 illustrates a self-organizing neural fuzzy inference network
architecture;
[0182] Fig. 42 illustrates a dynamic evolving fuzzy neural network;
[0183] Fig. 43 illustrates a flexible extensible distributed ANN in which ANN 

10 computation is shared between MRAs;
[0184] Fig. 44 is an illustration showing intelligent mobile software agents (IMS A) 
dynamics in a multi-agent system with an emphasis on MRA interactions;

15

20

25

[0185] Fig. 45 is an illustration showing IMS A relations between MRAs;
[0186] Fig. 46 is a flow diagram showing the operation of analytical agents;
[0187] Fig. 47 is a flow diagram showing the operation of search agents;
[0188] Fig. 48 is a flow diagram showing the initial operation of intelligent
negotiation agents (INAs);
[0189] Fig. 49 is a flow diagram showing IMS A intercommunications;
[0190] Fig. 50 is a flow diagram showing INA architecture;
[0191] Fig. 51 is a flow diagram showing the pre-negotiation process;
[0192] Fig. 52 is a flow diagram showing INA logistics;
[0193] Figs. 53 A and 53B are a flow diagram showing negotiation in a distributed 
system with mobility;
[0194] Fig. 54 is an illustration showing the simultaneous multi-lateral negotiation 
process with multiple variables;
[0195] Fig. 55 is an illustration showing multivariate negotiation factors;
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[0196] Fig. 56 is a flow diagram showing winner determination in a competitive INA 
framework;
[0197] Fig. 57 is a table showing the argumentation process;
[0198] Fig. 58 is a flow diagram showing anticipation of opposing INA strategies;
[0199] Fig. 59 is a flow diagram showing problem identification in which a group of
MRAs agree to narrow focus;
[0200] Fig. 60 is a flow diagram showing solution option development between 
MRAs;
[0201] Fig. 61 is a flow diagram showing a solution option selection method;
[0202] Fig. 62 is a flow diagram showing how the MRAs select the best available
solution to a problem in the present circumstance while waiting for more recent relevant 
information;
[0203] Fig. 63 illustrates MRA group agreement;
[0204] Fig. 64 is a table that shows the temporal aspect of the decision process;
[0205] Fig. 65 is a flow diagram showing the application of multivariate analysis to 
problem solving;
[0206] Fig. 66 is a flow diagram showing the application of regression analysis to 
problem solving of conflicting MRAs for winner determination;
[0207] Fig. 67 is a flow diagram showing the application of pattern analysis and trend 
analysis to problem solving of conflicting MRAs for winner determination;

I

[0208] Fig. 68 illustrates the modeling of MRS activity with simulations in which 
situation assessment is performed;
[0209] Fig. 69 is a flow diagram showing the synchronization of simulations within 
an MRA cluster;
[0210] Fig. 70 illustrates the contingency cellular automata (CA) scenario option 
simulations;
[0211] Fig. 71 illustrates reversible CA projecting backwards from a goal;
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[0212] Fig. 72 illustrates adaptive geometric set theory applied to an MRS;
[0213] Fig. 73 illustrates the optimal simulation selection in which simulation 
scenarios are (temporarily) converged;
[0214] Fig. 74 is a flow diagram showing the initiation of the aggregation process in 
which sets of MRAs form from the larger collective;
[0215] Fig. 75 illustrates the initiation of homogeneous MRA group formation;
[0216] Fig. 76 illustrates the initiation of common heterogeneous MRA group 
formation;
[0217] Fig. 77 illustrates the initiation of complementary heterogeneous (specialized) 
MRA group formation;
[0218] Fig. 78 is a flow diagram illustrating the initial phase of demand-initiated 
environmental adaptation;
[0219] Fig. 79 illustrates continuous MRA group composition reconfiguration;
[0220] Fig. 80 illustrates the continuous reconfiguration of sub-networks;
[0221] Fig. 81 illustrates dynamic group behavior adaptation to environmental 
interaction;
[0222] Fig. 82 is a flow diagram illustrating the parallel dynamic traveling salesman 
problem (TSP) with cooperating autonomous agents;
[0223] Fig. 83 illustrates the altruistic sacrifice of MRAs (gambit tactic) in order to 
acquire sensor information to increase chances of overall mission success;
[0224] Fig. 84 is a flow diagram illustrating the general dynamic coalition process;
[0225] Fig. 85 illustrates group MRA coordination and obstacle avoidance;
[0226] Fig. 86 illustrates specific MRA functionality via specialization;
[0227] Fig. 87 illustrates specialized MRAs working as a team;
[0228] Fig. 88 illustrates multi-functional self-organizing MRAs;
[0229] Fig. 89 illustrates surveillance and reconnaissance of a mobile object sensed 
and tracked by multiple micro-MRAs;
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[0230] Fig. 90 illustrates remote exploration with initial tracking of multiple objects 
with multiple micro-MRAs;
[0231] Fig. 91 illustrates sentry behavior within limited perimeters;
[0232] Fig. 92 illustrates cinematography applications with MRAs in which objects 
are sensed and tracked;
[0233] Fig. 93 illustrates land based toxic site clean up with multiple MRAs;
[0234] Fig. 94 illustrates dynamic cleanup of an oil spill within limited hydro 
perimeters by multiple MRAs;
[0235] Fig. 95 illustrates fire fighting with multiple MRAs as a dynamic interaction 
between the MRS and a complex environment;
[0236] Fig. 96 illustrates manufacturing production in which an object is created by 
using multiple MRAs;
[0237] Fig. 97 illustrates the assembly of objects in which parts are combined to 
create a whole object using multiple MRAs;
[0238] Fig. 98 illustrates road generation using MRAs, and;
[0239] Fig. 99 illustrates surgical micro MRAs used for trauma intervention and 
stabilization.

DETAILED DESCRIPTION OF THE INVENTION
[0240] The present disclosures illustrate in detail the main ideas of the present 
system. Since the present invention has numerous embodiments, it is not intended to restrict 
the invention to a single embodiment.
[0241] The system and methods incorporated in the present invention are 
implemented by using software program code applied to networks of computers.
Specifically, the present invention represents a multirobotic system (MRS) that includes at 
least two mobile robotic agents (MRAs). These MRAs have various useful purposes in the 
context of industrial and practical applications. The MRAs use complex software program 
code, including mobile software agents, to execute specific instructions involving robotic and
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computation operations. The software capabilities activate specific robotic functions within 
MRAs involving movement and decision-making.
[0242] The present invention focuses on how groups of autonomous MRAs operate in
a distributed MRS. As such, the invention, or cluster of methods, solves problems in the area 

5 of computation for groups of mobile robots in a distributed network. The system shows
novel ways for groups of MRAs to work together to achieve specific goals such as mapping 
the environment, coordinating missions, aggregating into dynamic coalitions and engaging in 
complex self-organizing activities. The system employs hybrid models for collective robotic 
control that combines not only synthetic control methods that combine central and behavior- 

10 based approaches but also hybrid artificial intelligence methods. Distributed artificial
intelligence approaches are used in several contexts of the present system, including learning, 
negotiation, simulation and decision-making of MRAs and intelligent mobile software agents 
(IMS As).
[0243] The main approach for decision making of MRA collectives is decentralized.

15 In order to achieve self-organizing aggregation for specific missions in changing
environments, the MRS engages in learning and decision processes that employ extensive use 
of IMS As. IMSAs interact with each other to handle routine matters between MRAs, 
including communication, analysis and negotiation. Intelligent negotiation agents (IN As) 
provide a medium for multilateral interaction of MRAs for group decisions. Simulations are 

20 used extensively to model and select optimal pathways for MRA group action and for the 
evaluation of scenarios for action.
[0244] This detailed description of the figures is divided into several parts that 
explain: (1) the main structure and operation of the MRS, (2) resource management of a 
distributed MRS, (3) MRA learning, (4) AI and ANN, (5) IMSAs, (6) INAs, (7) problem

25 solving, (8) cellular automata (CA) simulations, (9) aggregation and self-organizing dynamic 
coalitions and (10) specific applications including (a) remote sensing, (b) hazard management 
and (c) building processes.
General System Architecture and Dynamics
[0245] Fig. 1 illustrates the layers of the multi-robotic system architecture. The first 

30 level shows a synthetic hybrid control system for MRAs including central planning control
and behavior-based control aspects, which are further described in Fig. 2. MRAs are
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independent autonomous agents that use AI to interact with their environment using the 
hybrid control model.
[0246] The second layer is the level of the mobile robotic system in a distributed
network which connects together individual MRAs using communications. The Grid 

5 computing architecture is used to link the MRAs together at layer three in order to share 
computation and database resources between the individual MRAs for maximum network 
efficiency. In this way, the MRA network develops dynamic clusters for optimal 
computation and storage capability. Particularly in time constrained dynamic environments, 
the mobile Grid network model is critical in order to accomplish complex tasks.

10 [0247] At level four, the dynamic distributed database system is used. This extension
of the Grid computing hardware architecture uses object relational databases and temporal 
data objects to organize data between databases in the MRAs.
[0248] Artificial intelligence is used in layer five as a dynamic interactive artificial 
neural network that evolves. By applying AI to evolving networks of MRAs as they interact

15 in a dynamic environment, complex learning and adaptation processes develop.
[0249] Intelligent mobile software agents (IMS As) operate within the multi-agent 
system (MAS), comprising the sixth layer. The IMSAs are complex agents that perform a 
number of important functions within each MRA, such as analysis and decision-making, and 
between MRAs, such as data search, negotiation and collaboration.

20 [0250] The MRAs produce complex simulations to represent their relative positions
and movements as well as to map out the possible scenarios for future action. These 
simulations are represented as mobile cellular automata in level seven.
[0251] Finally, the specific functional application of each implementation of the 
system comprises level eight. The main application categories of remote sensing, hazard

25 management and manufacturing processes each use specific functional representations that 
are closest to the environment with specific hardware types.
[0252] Fig. 2 shows a multi-layer architecture of an MRA synthetic hybrid control 
system. The first level shows specific central (0270) and behavior-based (0280) control 
processes, in which the former uses abstract logic and the latter is reactive to the

30 environment. In layer two, the two main processes are intermediated (0260) in synthetic 
control approaches.
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[0253] Layer three illustrates several main hybrid control systems that combine both 
central planning and behavior-based control models: (1) planning driven (0220), (2) advice 
mediation (0230), (3) adaptation (0240) and (4) postponement (0250). The planning-driven 
approach to combining the main control methods determines the behavioral component; it is 
primarily a top-down model. The advice mediation approach models the central planning 
function as advice giving, but allows the reactive model to decide; it is primarily a down-up 
model. The adaptation model uses the central planning control module to continuously alter 
reaction in changing conditions. Finally, the postponement model uses a least commitment 
approach to wait to the last moment to collect information from the reactive control module 
until it decides to act.
[0254] Finally, at layer four, the suite of synthetic control systems (0210) is 
constructed of various combinations of these main hybrid control models. For instance, a 
robotic unit may use a suite of hybrid control systems in order to optimize specific situations.
[0255] The evolution of these hybrid control models, as represented in the layered 
structure of figure two, is suited to complex social behaviors of a distributed MRS used in 
dynamic environments.
[0256] The structure of the dynamic database organization is referenced in Fig. 3 as a 
table. A single MRA unit includes a hardware component with an object-relational database. 
Within this MRA, software agents perform tasks such as analysis, negotiation and decision- 
making. On a more advanced level, a single MRA has complex computation resources to 
manage, including AI and ANN.
[0257] Taken as a whole system of MRAs in a distributed network, the MRAs 
manage data within a network and share database organizational functions. Similarly, in the 
distributed network, the software agents become mobile and interact with other software 
agents at various MRA locations. Finally, on this network level linking MRAs, computation 
resources are constantly restructured so as to maximize computer power for complex time 
constrained applications.
[0258] On the level of mobility, MRAs change spatial positions in variable time 
sequences in order to perform specific tasks. The software agents are also mobile within a 
limited wireless range between mobile MRAs. The network of MRAs constantly rewires its 
computation resources by using AI and ANN in order to adapt to its environment and to 
optimally perform the collective mission.

38



WO 2004/018158 PCT/US2003/026764

[0259] Thus Fig. 3 shows that while a single autonomous unit is important, when
combined with other similar units in a network and provided with mobility, and when also 
combined with both software agent system integration and AI and ANN capabilities, the 
system produces a complex adaptive collective capable of autonomous mobile interaction.

5 [0260] Figs. 4 and 5 show simple MRA operations such as using sensors to locate
other MRAs or changing position by avoiding obstacles. Fig. 4 shows a simple 
communication between three MRAs using sensors. Each MRA uses its sensors to detect the 
positions of the other MRAs. In this way, each MRA can identify each others positions. In 
another embodiment, the position of each MRA may be transmitted to other MRAs in the 

10 network by way of wireless communications. In still another embodiment, positions of 
MRAs can be transmitted to other MRAs by satellite, radar or other external GPS tracking 
system. In these ways, the positions of MRAs can be tracked by other MRAs in the network. 
The reason that individual MRA position tracking of other MRAs is important is that in a 
noisy environment, there are multiple methods for MRAs to track other MRAs. In the total 

15 absence of communication, an individual MRA may default to a behavior-based reactive 
mode of interacting with other MRAs and with the environment.
[0261] An individual MRA can detect an object (0520) in the environment with its 
sensors and change position from 0520 to 0530 as illustrated in Fig. 5.
[0262] The individual autonomous MRAs are part of a distributed network in much 

20 the same way that inert computers are linked together into grid computing networks for
supercomputing. This mobile grid computer network comprised of individual MRAs uses 
wireless communications in order to share computation resources. Fig. 6 shows a 
metacomputing model for a distributed mobile robotic system (MRS). The figure describes a 
flexible mobile grid architecture of dynamic clusters of mobile MRAs. At 0610, MRA 1 

25 requests (at (l)(a), (l)(b) and (l)(c)) computation resources and data storage capacity from 
other MRAs. MRAs 2,3 and 4 (at 0620, 0630 and 0640, respectively) then respond to the 
request (at (2)(a), (2)(b) and (2)(c), respectively) of MRA 1 (at 0650).
[0263] Fig. 7 illustrates the sharing of computation resources among MRA nodes in a 
wireless mobile MRS, with an emphasis on the routing of.database and analytical functions.

30 The distributed network of MRAs can work together as one dynamic unit. Messages are 
input to the report status distributor (0720) and the request coordinator (0730) The report 
status distributor feeds messages to the MRS (0740) which interacts with the cache (0750)
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and the data stream (0760). The cache also interacts with the analytical (0770) functions of 
the system. Messages are output from the data stream and from the request coordinator. The 
mobile wireless grid computing architecture uses the most recent version of the message 
passing interface (MPI) for distributed computer networks. The use of grid architecture in a 
mobile wireless distributed network allows for a maximum of flexibility and scalability in 
providing massive resources in adaptive environments.
[0264] MRAs possess not only computation capability, which allow up to teraops 
(one trillion operations per second) or yodaops of system processing power, but also database 
storage capacity as well. Each MRA possesses a database. However, taken as a whole, the 
MRS network comprises a distributed database system with complex coordination 
capabilities. The databases work together to store data objects such as a table, a calculation, a 
multimedia segment or other complex combinations of coherent mobile code. Such working 
together involves sharing database storage among a number of machines in order to ensure 
maximum efficiency under severe time constraints. Fig. 8 shows database coordination in a 
distributed MRS. The front end (0810) inputs queries at the query initiator (0820) which 
inputs to the query executor (0830), which has buffers (0870) with other MRAs. The 
multiple data sources (0850 and 0860) supply information to the query executor. The query 
executor outputs its queries to output queues (0840) at various other MRAs (0880). This 
process is further illustrated in Fig. 9.
[0265] In Fig. 9, the dynamic distributed object relational database data flow process 
is described. The query origination (0910) moves to the various databases (0920), DB1 
through DB5, internal to MRA 1 through MRA 5. The query executor (0950) which is 
buffered (at 0970), searches the same databases (0980), which have sensor data stream inputs 
(0930) as data sources (0940). Once accessed, the databases output their data at the output 
queues (0990). This distributed model shows a parallel network approach to database 
organization. In one embodiment, the system uses active storage databases in which the 
computer processing capacity is internal to the database, which is itself continuously mining 
objects for analytical functionality.
[0266] One of the particular types of obj ects that the obj ect-relational database 
management system organizes involves temporal objects. Because the MRS is typically time 
constrained in order to perform its primary missions, temporal objects become a prominent 
part of the distributed database system. Temporal objects reveal their temporal priority in
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order to be listed in a higher or lower relative priority in the database for storage retrieval 
purposes. Objects are “tagged” with temporal priorities such as “now”, “imminent”, “very 
soon”, “in the future”, “possibly useful in the future”, “past”, “near past”, ‘ immediate past , 
“urgent priority”, etc. By storing, and reprioritizing, objects according to temporal priority,

5 the system can operate much more efficiently. Fig. 10 shows how temporal objects operate 
inaORDbMS.
[0267] The query generator (1010) requests the query executor (1020) to access 
databases at DB1 (1030) and DB2 (1050) in sequential order. These databases access the 
data object (1060), which is tagged as it undergoes temporal change and is given temporal

10 priority (1040) and is then provided back to the query executor (1020). Once again the
databases are accessed with temporal information about the data object. The data object is 
then directed to the query manager (1070) for feedback to the system. By prioritizing data 
according to temporal priority, the system can route data efficiently and effectively anticipate 
functions. Temporal data is useful in the present system in the context of evolving learning,

15 evolving ANN, evolving game theoretic negotiation applications, evolving environmental 
conditions and general systemic adaptation processes.
[0268] Fig. 11 shows the mobile grid dynamics. Data sets at a specific location 
inform the system analysis at 1120. The data sets are analyzed and interpreted at 1110 in 
order to determine where the system should move. The system moves to the new position at

20 1130. Yet this change of position provides new data sets, which are, in turn, provided to the
system for analysis in order to determine where the system should move. This dynamic 
process optimizes the functionality of the system.
[0269] It is necessary for MRAs to obtain and transmit information from other MRAs 
about specific data such as physical position, analysis, negotiation and decision-making.

25 Concise data sets are transmitted between MRAs in real time about the location and
analytical state of the MRAs. These abbreviated data sets are consolidated in each MRA by 
autonomous blackboards, which act as “radar readouts” informing MRAs about the state of 
the network.
[0270] In Fig. 12 autonomous MRA blackboards are described. In this example,

30 limited information is referenced involving spatial position, vector and speed so that each
MRA can get a snapshot of the present situation of every other MRA in the system. In the 
figure, MRAs 1 through 4 readout specific data sets in a spreadsheet format at 1210 during
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phase one. New data sets are presented to the same MRAs in phase two to signify a change 
in state of the network. In one embodiment, an external blackboard keeps track of the data as 

I a form of back up. In the event of a centralized blackboard on board a specific MRA, such as 
a satellite, the leader would maintain the consolidated information function. If such a 

5 consolidated approach were used in a further embodiment of the system, the leader may shift, 
thereby providing fluidity for centralized leadership of the system.
[0271] Fig. 13 describes the operation of intelligent mobile software agents (IMS As) 
among MRAs. Though discussed below at figures 44 to 58, IMSAs (and INAs) are the main 
software based methods for MRAs to communicate, interact and collaborate with each other.

10 MRA 1 (1310) receives a collaboration agent sent by MRA 2 (1320), as it launches a search 
agent to both MRA 2 and 3 (1330). An interaction process is engaged between MRA 1 and 
MRA 2. Meanwhile, an analytical agent is launched by MRA 3 to MRA 1, while a 
messenger sub-agent is launched from MRA 3 to MRA 2. Finally, the figure shows 
negotiation agents (INAs) interacting between MRA 2 and MRA 3. These software based 

15 interactions represent a key method for MRAs to communicate and work with each other as a 
network.
[0272] Figs. 14 through 19 deal with MRA training and learning, while figures 20 
through 25 deal with social learning.
[0273] Fig. 14 is a flow chart depicting the evolution of training level states. After an 

20 MRA initiates a training exercise (1410), it increases levels of training (1420). It may
employ a learning module with specific learning tasks (1460) and refinement of learning 
tasks (1470) or it may interact with various environmental inputs (1430) in order to leam. At 
a specific point, a juvenile training level is achieved (1480). However, with continued 
experiments with the environment, it improves learning with positive reinforcement (1440) 

25 and an adult training level is reached (1450), which is constantly reinforced with a feedback 
loop.
[0274] MRA attitude biases are shown in Fig. 15. On a behavior spectrum between 
passive (1510) and aggressive (1530) behaviors lies a moderate “normal” behavior (1520). 
With passive behavior, the MRA acts with slower judgment but generally with more

30 information, while with aggressive behavior, the MRA acts with faster judgment but within 
information constraints because of the time limits of quicker action.
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[0275] Environmental interaction is critical for learning and adaptation. Fig. 16
shows a flow chart in which MRAs interact with both other MRAs and with the environment. 
After an MRA initiates a training exercise (1610), it either interacts with other MRAs (1620) 
or with its environment (1630). When it interacts with other MRAs, an MRA queries other 
MRAs about a specific question (1640), while the MRAs then access databases and respond 
to the data query (1660). Inter-MRA feedback is then shared between MRAs for efficient 
learning (1680), akin to a tutorial. On the other hand, when an MRA interacts with the 
environment, as the environment changes, the MRA feedback changes (1650). In this case, 
negative feedback is avoided (1665) while positive feedback is attractive behavior (1670) 
which leads to reinforcement learning (1675) and a feedback loop with the environment. As 
the environment changes, new data about these changes is supplied to MRA databases in 
order for them to access these environmental changes. When provided with positive 
feedback, the MRA constantly updates its beliefs about the environment (1690).
[0276] The MRA training process includes a combination of environmental 
interaction with group sensor data as illustrated in Fig. 17. The MRA initiates learning 
(1710) and accesses either the sensor data from other MRA team members (1720) or the 
environment (1730). By accessing the environment direction, the MRA collects raw sensor 
data (1740). Whether obtained from other MRAs or directly from the environment, the MRA 
analyzes and interprets the sensor data (1750) and initiates a decision to act based on the data 
(1760). In this way, training processes may be implemented based on the data obtained, 
contingent on the method of originating the data (whether from the environment directly or 
from other MRAs). Whereas figure 17 shows the two main ways of obtaining data, Fig. 18 
shows the two main qualities of information, viz., intensity and quantity of data, which 
provide MRA learning reinforcement.
[0277] In Fig. 18, sensor data is input into an MRA (1810) while the intensity of 
inputs is measured (1820) or the quantity of inputs is measured from different sources (1830). 
In either event, the inputs are compared to databases (1840) while each is provided a 
weighted value, with high intensity input weighting (1850) and quantity input weighting 
(1860), respectively. The MRA evaluates the weighted value from different sources (1865) 
and interacts with the environment based on input evaluation (1870). For instance, if a 
number of MRAs provide a large quantity of inputs that a mission objective is achieved, then 
these inputs are weighted highly in order to provide reinforcement of a specific behavior
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(1880); contrarily, if a very high weighting is assigned to an individual MRA data set because 
of the intensity of the data, then this behavior is reinforced.
[0278] The combination of the aforementioned learning approaches present a hybrid 
learning model with time constraints illustrated in the flow chart of Fig. 19. Data from other

5 MRAs (1910) and direct environmental inputs (1920) are analyzed (1930) before the MRA 
acts (1940). The MRA then proceeds to interact with the environment (1960) and receive 
positive feedback (1950). This environmental feedback presents behavior reinforcement in a 
minimal time (1980) and the MRA establishes a plan of action (1985), which is implemented 
by activating specific behavior (1990). Meanwhile, the MRA updates other MRAs (1970)

10 which provides a partial feedback loop for MRAs to supply information for future sensor 
data.
[0279] In Fig. 20 social learning is described as MRA interaction. MRA 1 (2010), 
MRA 2 (2015) and MRA 3 (2020) interact with objects (2030) in the environment in an 
initial phase. In the second phase, the MRAs interact with each other by sharing information

15 about the object-interaction. This descriptive phenomenology about the objects is used in the 
third phase by further interactions between the MRAs and the objects.
[0280] Fig. 21 illustrates an MRA that teaches another MRA. MRA 2 (2120), a 
“student” with limited training, requests assistance from an experienced MRA 1 (2110). 
While MRA 1 is in motion, and thus moves to a new position (2130), the “adult” MRA 1

20 provides the student with a learning module via a software agent.
[0281] Given the distributed environment of the present MRS network and the 
learning schema presented, it is possible to have asymmetric MRA leaders. That is, if this is 
not a centralized system, it is still possible to have mission leaders, but they are not 
necessarily centralized or even consistent. Like in a flock of geese, any member of the flock

25 may be a leader, though temporarily. Consequently, asymmetric MRA leadership provides 
the emergence of temporary hubs of MRAs that cluster together to interact with the 
environment.
[0282] Fig. 22 illustrates this process. In the first phase, a leader of a cluster of 
MRAs (2210) interacts with a moving object (2220). But the leader is knocked out of action

30 (2240) in the second phase, while a new leader emerges for the group (2230) as the new
leader seeks the moving object (2250) and it is also removed from action. Finally, in phase 
three, yet another new leader emerges for the group (2260) while the mobile object (2470)
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continues to elude the group. At each new phase, a new hub is created with a new leader of 
the MRA cluster. In each case, the goal is to seek out the elusive mobile object.
[0283] A division of labor can occur in specialized teams for increasingly efficient 
performance as shown in Fig. 23. Each MRA is designated with a letter to signify its role as

5 a specialist, while the whole group interacts with a mobile object (2320). In phase two, the 
MRAs reorganize into new positions in order to optimize the sharing of data and resources 
and to organize an interaction between the various specialists and the object (2340). Fig. 24 
further illustrates the self-organization process by task division for automatic individual 
specialization. In the first phase, the group of MRAs (2410) interact with the object (2420).

10 The MRAs automatically activate a specific specialization mode (2430) to attack the
increasingly elusive object (2440) as shown in the second phase. However, at phase three, 
the MRAs automatically reorganize to a new specialization mode (2450) to catch the object 
(2460).
[0284] One key application of the (social) learning and environmental interaction 

15 processes is to construct a self-organizing map of an uncertain environment. This map can
then be used as a benchmark for further collective action. Fig. 25 is a flow chart that shows 
the process of a self-organizing map for a group of MRAs. After initial parameters are 
developed (2510), MRAs move to new locations to fulfill a mission (2520), where they 
receive sensor feedback from the environment (2530). The MRAs create an initial map based 

20 on initial sensor data organization (2540) and obtain more sensor data (2550) as they cover 
more terrain to include in more refined mapping phases. In this way, the MRAs fill out the 
initial map to create a fuller picture of terrain to include formerly missing parts (2560). The 
MRAs can perform this filling in procedure by using caching techniques that add the most 
recent information to a map outline. More complete data from sensors continue to refine the 

25 map (2570) as the MRAs continue to generate more and better data from continued mobility 
and data gathering. As objects in the environment change position, the MRA sensor data 
inputs that represent these changes continue to update the maps (2580).
[0285] Using artificial intelligence and artificial neural networks optimizes the
learning process. Figures 26 through 29 show the main AI procedures of genetic algorithms 

30 and genetic programming. These techniques are then applied, in figures 30 through 43, to 
artificial neural networks. These discussions are important because AI and ANN are also
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applied to IMS As, to the negotiation process and to simulations, which will be addressed later 
in the figures.
[0286] In his quest for software that would solve complex optimization problems,
Holland sought a solution from nature. By emulating biological processes of breeding,

5 mutation and survival of the fittest, he sought to develop a new kind of software logic that
would automatically improve in order to solve problems. His revolution in software design 
emerged as genetic algorithms that are binary representations of genes that undergo 
evolutionary processes similar to biological entities. Fig. 26 describes a flow chart of a 
genetic algorithm. After a population is created (2610) (and mutations added to the 

10 population (2620)), each member of the population is evaluated for fitness (2630). The weak 
members are pruned out (2640) and removed (2650) while the strongest members are 
selected for crossover (2660), such as breeding, which is then performed (2670). A feedback 
loop is generated in order to generate multiple generations of a population or a range of sub­
populations. The successful candidates are put into the population to replace the weak 

15 members (2680). In this way, the population of possible algorithms evolves to an optimal 
solution. Fig. 27 shows an example of a binary genetic algorithm crossover in which 2710 is 
bred with 2720 to achieve 2730. In this example, a combination of “zero” and “one” yields a 
one, while two zeros or two ones combined in a specific position produces a zero.
[0287] Holland’s student, Koza, developed genetic programming based not on binary 

20 algorithms but on the evolution of trees diagrams. Fig. 28 shows a genetic programming
model with a crossover from the first phase of a tree on the left with a tree on the right. In 
this example, the triangular grouping on the upper left (in the box) (2830) is combined (2880) 
with the tree of the upper right (including the triangular grouping in box (2970)), though the 
two groupings are “switched” right to left in the examples. This tree structure modeling 

25 approach more closely resembles the actual genetic representation of evolutionary processes.
[0288] The process of producing multiple generations of algorithms may take an 
enormous amount of time because there may be many thousands of generations before a 
solution to a problem emerges. In order to abbreviate this, process, the evaluation part of the 
process may be performed in a parallel way. By breaking down the fitness evaluation

30 function, the process is expedited. Fig. 29 uses the tree structure model to illustrate parallel 
subpopulation fitness evaluation in which two main triangular structures (2910 and 2920) 
break into a large number of smaller sub-populations (2930 and 2940) in order to assess the
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fitness of the best set of pairings. A final pairing is then selected (2950). Rather than running 
through a single sequence of the fitness assessment procedure, the parallel approach is much 
more time sensitive. This time sensitivity is more conducive to adaptive systems in which 
real-time interaction is critical.

5 [0289] Genetic algorithms, genetic programming and evolutionary computation
techniques are applied to artificial neural networks in order to (1) calculate the initial weight 
and the connection weights of the signal between neurons, (2) train and optimize the 
connection weights, (3) generate the architecture and topology of a NN and (4) analyze the 
pattern, structure and phase state of a NN. GA, GP and EC are also applicable to a range of 

10 complex computation problems, including (1) distributed problem solving, (2) group
learning, (3) group cellular automata simulations, (4) routing of computation resources in the 
distributed system, (5) scheduling in a dynamic distributed system, (6) creating a self­
organizing map, (7) solving optimization problems, (8) performing game theoretic 
simulations, (9) performing parallel data mining and (10) selecting a winner from among 

15 complex aggregation choices.
[0290] Figs. 30 through 43 deal with artificial neural networks. ANNs and
evolutionary ANNs have numerous applications to the present system, particularly (1) 
organizing and optimizing distributed networks, (2) performing dynamic data mining, (3) 
organizing indeterministic learning, (4) ordering and adapting simulations, (5) modeling and 

20 optimizing dynamic game theoretic interactions (6) structuring adaptive self-organization and
(7) general problem solving. The field of neural networks has evolved in the last generation 
from a purely theoretical endeavor of logicians, mathematicians and neuro-biologists to 
include applications that are useful for practical systems. The present system is an example 
of an application of complex neural networks to learning, simulation and adaptive processes. 

25 The neural networks are computational representations within the program code of MRA 
hardware that provide useful tools for calculations of specific solutions to problems.
[0291] ANNs are parallel computational systems including interconnected nodes.
Sometimes called connectionism because of an emphasis on the connections between the 
nodes, ANNs have inputs and outputs in the connection weights between nodes. An ANN 

30 node represents an artificial neuron that is modeled after biological neurons in a brain. A 
perceptron is the structure that represents the sum of a neuron’s inputs and outputs.
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[0292] Fig. 30 shows a two layer neural network in which inputs are entered on the
left side and outputs are registered on the right side of the figure. A feedback connection can 
be added that directs the connections back to the left side of the nodes. In Fig. 31, a multi­
layer ANN is represented, with 3120 and 3140 representing the first layer, 3110, 3125 and 
3150 representing the second, hidden, layer, and 3130 representing the output layer. In this 
example, the ANN structure is a multilayer perceptron (MLP). The connection weights are 
illustrated in numerical terms in this figure, with the bottom part having higher numbers than 
the upper part. There are a number of types of neural networks that may be useful for various 
functions of a distributed mobile multirobotic system, including the MLP illustrated here, the 
Hopfield Network, the Hebbian Network, the Boltzmann Network, the Bayesian Network, 
the evolutionary ANN (neuroevolution) and the recurrent Net. These types of ANNs can be 
classified as having feed-forward recall or feedback recall, being deterministic or 
indeterministic and, finally, possessing supervised learning or unsupervised learning.
[0293] In Fig. 32, genetic programming is used to calculate initial connection 
weights. The GP randomly generates a population, computes the fitness of its members, 
generates a new population by performing a crossover of the first generation and adding 
random mutations and, finally, seeks to identify the fitness of specific members of this most 
recent population by comparing the best fit members with the criteria to satisfy the problem 
of identifying the initial weight of the connection. Fig. 33 shows how genetic programming 
is applied to an indeterministic ANN.
[0294] In phase one, the multi-layer ANN has inputs that register higher relative 
numbers at the top (connections between 3315 and 3310, between 3310 and 3320 and 
between 3325 and 3320) of the network than at the bottom (connections between 3315 and 
3325, between 3325 and 3330 and between 3325 and 3320) of the network. As the network 
grows, shown in phase two, it emphasizes growth at the top, where there is significantly' 
higher activity, and adds nodes at 3340 and 3350, while lower positioned nodes at 3355, 3360 
and 3365 become inactive. Fig. 34 shows the automatic generation of a new node (3450) and 
a new connection (between 3420 and 3450) through a mutating process. This process of 
mutation and growth through node (and connection) addition(s) provides an evolutionary 
model of ANN change called neuroevolution. GP calculates both the addition of the node, 
the addition of the connection and the connection weights. In addition, GP can 
simultaneously calculate the node/connection additions, connection weight changes and the 
architecture of the evolving ANN particularly in a distributed network using parallel
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computation techniques. Fig. 35 illustrates an evolutionary ANN indeterministic feed 
forward progression from the first phase to the second phase. In the second phase, new nodes 
(3560 and 3580) and their connections are added, while less active nodes (3550 and 3570) 
and their connections are made inactive. In this way, ANNs constantly “rewire the network 

5 towards more productive nodes.
[0295] Fig. 36 shows a 3-2-1 multilayer network in which connection weights are 
calculated by genetic algorithms. The algorithms are represented as binary units in order to 
calculate the connection weights. The network is trained by fine-tuning the connection 
weights through a process of optimization that the successive generations of genetic

10 algorithms perform.
[0296] Fuzzy logic is a method to provide new approaches to computing that includes 
terms like “maybe,” “possibly” and other partial and soft descriptions. Also called soft 
computing, FL represents a departure from traditional hard computing with mutually 
exclusive logic. FL uses statistical methods to compute solutions to complex real world

15 problems. FL is applied to ANN to produce complex adaptive networks. Fig. 37 describes a 
FL module. A sensor provides crisp data input (3710) to a fuzzifier module (3720), which is 
fed random mutations (3770) and proceeds with the fuzzification process. At this point, a 
fuzzy analysis proceeds in a fuzzy inference engine (3730) that operates according to fuzzy 
rules (3780) which are themselves adapted (3790). After the fuzzy analysis process, the 

20 defuzzification of data occurs in the defuzzifier module (3740) where crisp data is output
(3750) and presented to actuators (3760) for functional performance. This process is similar 
to a the process a signal undergoes in conversion from an analogue waveform to a digital 
mode by way of an analogue-digital (A to D) converter, or, contrarily, from a digital to an 
analogue signal by way of a digital-to-analogue converter (DAC).

25 [0297] Fig. 38 shows a neuro fuzzy controller with two input variables and three
rules. The input variables A1 (3810) and A2 (3820) provide connections to the rule base R1 
(3830), R2 (3840) and R3 (3850), which then provide an output at X (3860). Fig. 39 shows a 
five layer evolving fuzzy neural network, with the input layer (3910), the fuzzification layer 
(3920), the rule node layer (3930), the decision layer (3940) and the output layer (3950). A 

30 more complex ANN architecture is described in Fig. 40. In this figure, an adaptive network 
based fuzzy inference system is shown in which inputs are presented to the initial 
presentation layer, which is shown here in a parallel configuration, with R and S nodes. A
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training process occurs in the multilayer network (4040) that contains hidden layers. The 
outputs of this training process are fed to the consequent parameters (4050) that then lead to 
outputs.
[0298] A multilayer neural fuzzy inference network is illustrated in Fig. 41. The first 

5 layer (4110) generates the offspring (4115), which produce neural nodes at level three (4120)
that are evaluated for fitness at level four (4125). The nodes breed a new generation with 
inactive nodes (4130) at level five. The surviving nodes (4135) again breed a new population 
of nodes that result in two active members (4140) in layer seven. The successful mating of 
these nodes yields an output node (4145) at level eight. By breeding successive generations 

10 of successful populations, and by training these successful populations, the network is self­
organizing and adaptive to its environment.
[0299] Fig. 42 shows a dynamic evolving fuzzy neural network. With five layers, 
including an input layer (4250), a fuzzy quantification layer (4255), an evolving rule nodes 
layer (4260), a weighted least square estimator layer (4265) and an output layer (4270). This

15 model shows a complex synthesis of simpler ANN representations.
[0300] One of the advantages of applying evolutionary computation to ANN is that 
such advanced computing can be performed more efficiently by using parallel approaches to 
break down a problem into smaller parts so that a larger number of computer processors may 
solve the problem simultaneously. In this way, multiple MRAs may work on a problem

20 together in order to accomplish the task in real time. One application of this approach is in 
the fitness evaluation part of the genetic algorithm population production process. The 
problem of identifying the successful candidates in a population can be performed, and 
expedited, by using parallel processing.
[0301] In another example of using parallel processing to accelerate computation 

25 problem solving, consider the problem of adding a neural node. By using parallel
computation processes, not only can the neural node be added, but the connections to it can 
be added simultaneously; in addition, the architecture of the network can be configured and 
reconfigured in real time, as new training models are considered and tested. The application 
of parallel algorithms to evolutionary computation, and, in turn, the application of EC (both 

30 GA and GP) to ANN provide increasingly efficient approaches for use in a distributed mobile 
MRS. MRAs share ANN computation in a flexible way as illustrated in Fig. 43. Not only 
are the ANN not limited to the computation of a single MRA, but MRAs (4310 and 4320)
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may share ANN computation resources between them. This distributed manifestation of 
parallel computation shows a flexible and extensible model in which the sharing of resources 
results in increasingly efficient capabilities.
[0302] The application of EC and ANN to a distributed mobile MRS involves several 

5 important areas, including learning, training, adaptation and prediction. In order for MRAs to
interact with an uncertain, and changing, environment, it must learn, predict and adapt.
While EC is useful to train ANNs, it is the general learning capabilities that are regarded as 
an outcome of this training process that ANNs ultimately provide to MRAs and to the MRS 
that is critical to the effective real time adaptation needed by the system. Many of the 

10 problems that a mobile MRS encounters involve evolving solutions, adaptive behavior 
patterns, complex predictive scenario modeling and self-organized processes. These 
problems are solvable by applying EC and ANN models.
[0303] An example of the application of EC and ANN to an MRS is the modeling of 
game theoretic interactions. A particular strategy may be evolved for a particular player

15 based on a basic rule pattern selection organized by a multilayered feed forward perceptron. 
Each layer performs a calculation of the weights of inputs, connections and biases. A random 
number of nodes is selected in the multilayer network, with a random number of offspring 
replicated from each parent and randomly mutated. A number of mles of game moves are 
identified and consistently applied. Each network generation is evaluated for accurate 

20 effectiveness of achieving a successful game move. The network is trained and retrained
with full information. In this way, the learning process is refined so that each player is able 
to optimally move according to the mles.
[0304] This straightforward application of EC and ANN to a game theoretic modeling 
problem is relevant for a distributed mobile MRS because the present system uses

25 simulations to model action. The simulations, which are discussed below in Figs. 68-73, can 
be either present-time-based or may be based on future scenarios. Since in the case of the 
MRS, multiple MRAs provide sensor data inputs into the system and multiple MRAs provide 
computation resources, the complexity of the game theoretic interaction increases with the 
size of the network. Only EC and ANN, along with parallel computation of a mobile grid 

30 computing system, is able to calculate the increasingly complex problem solving algorithms 
necessary to organize such a model. The main systemic unit that is able to organize such a
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complex architecture is the intelligent mobile software agent (IMS A) operating within a multi 
agent system (MAS). IMSAs, introduced in figure 13, are discussed in figures 44 through 49.
[0305] IMSA dynamics within the MAS are discussed in Fig. 44 in the context of 
MRA interactions. MRA 1 (4410) launches a collaboration agent that is received by MRA 2 
(4420) and collaboration between the two MRAs is initiated. A search agent is launched 
from MRA 1 to search databases in MRA 3 (4430) and MRA 4 (4440). A negotiation 
between MRA 3 and MRA 4 occurs by using intelligent negotiation agents (INAs). INAs are 
further discussed in figures 48 and 50 through 58 below. Finally, analytical agents are 
launched by MRA 4 to MRA 2 and MRA 3 in order to analyze a specific problem. Fig. 45 
shows IMSA relations between MRAs. MRAs are able to communicate with each other 
about complex tasks simultaneously by using IMSA specialist agent roles. There are number 
of specific types of IMSAs, including analytical agents, search agents, collaboration agents 
and negotiation agents. Figs. 46 to 48 briefly describe analytical, search and negotiation 
agents.
[0306] In Fig. 46, analytical agents are described. After an MRA identifies a problem 
(4610), it generates an analytical agent (4620). However, the process of initiating the AA 
begins with the generation of a search agent, which is sent to multiple MRAs’ databases with 
an initial query (4630). The search agent reports back to the initiating MRA with the 
priorities of data in MRA databases (4640). The AA is then sent to the MRA in the order of 
priority sequence (4650) revealed by the search. The AA analyzes the problem using specific 
methods (4660) detailed at 4670 including MV A, regression analysis, pattern analysis, trend 
analysis and hybrid analyses. The AA develops solution options to the problem (4680) and 
shares the results with relevant MRAs (4690).
[0307] Search agents are described in Fig. 47. An MRA generates a search agent 
(4710) to query distributed MRA databases (4720). The search agent receives initial 
feedback from databases regarding initial query (4730), refines the query with specific 
databases (4740), evolves search parameters (4750) and seeks specific data sets among 
databases (4760). The search agent finds data sets as a result of the refined search (4770) and 
retrieves them for the MRA.
[0308] The general negotiation process is described with reference to intelligent 
negotiation agents (INAs) in a distributed network in Fig. 48. The initiator INA meta-agent 
(4810) begins the process by launching initiator INA micro-agents to several other MRAs.
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INA micro-agent 1 is launched to a negotiation session at INA 2’s location (4820), INA 
micro-agent 2 is launched to a negotiation session at INA 3’s location (4825) and INA micro­
agent 3 is launched to a negotiation session at INA 4’s location (4830). Each respective 
negotiation session occurs at each INA’s location within its MRA (2, 3 and 4, respectively).

5 The initiator INA interacts with INAs at the various remote MRA locations (or at its home 
location) (4850), while a winner is determined at its home location (4855). Mutual 
agreement is reached, in this case between INA 3 and the initiator INA (4860), while sessions 
are closed between the INA 2 and INA 4 negotiations (4865) and the overall negotiation 
process is closed (4870).

10 [0309] Fig. 49 describes an IMSA intercommunication with messenger sub-agents.
Once an MRA makes a decision (4910), the content of the decision is translated into specific 
instructions of action (4920) and the MRA creates messenger sub-agents (4930). The MRA 
launches the messenger sub-agents to other MRAs (4940), which then deliver the message 
with the instmctions to the MRAs (4950).

15 [0310] Because INAs are used in a critical way in a distributed mobile multi-robotic
system, they are further developed in figures 50 through 58, including a description of the 
INA architecture, pre-negotiation process, INA logistics, negotiation process in a distributed 
network, multi-lateral negotiation process, multivariate negotiation factors, winner 
determination process, argumentation process and opposing INA strategies.

20 [0311] INAs work by negotiating between at least two MRAs. INAs use
argumentation methods to negotiate by presenting arguments with variable weights. INAs 
also negotiate about the best simulation to use in a specific situation. In general, INAs use 
multi-lateral and multivariate negotiation in order to come to agreement between 
noncooperating MRAs. In the case of competitive MRAs that negotiate for a compromise,

25 problems are solved using group problem-solving and analytical techniques. Solutions to 
complex MRA group problems include the optimal or a temporary choice between solution 
options. Group problem solving is discussed in figures 59 to 67. In all cases, AI is used in 
order to facilitate the negotiation and problem solving processes.
[0312] In Fig. 50, the main INA architecture is described. Four INAs, including an

30 initiator INA (5020) and INA 2 (5010), INA 3 (5015) and INA 4 (5025) enter into a pre­
negotiation session (5030), which is discussed more fully in figure 51 below. After pre­
negotiation, all INAs negotiate in a first session between the initiator INA and the several
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INAs (5040), but stops negotiating with INA 4 (5045). While the initiator INA continues to 
negotiate with INA 2 and INA 3 in session two (5050), it eventually stops the negotiation 
process with INA 2 (5070). However, the initiator INA continues to negotiate with INA 3 in 
session 3 (5060) where it reaches agreement (5080) and closes the session (5090).

5 [0313] Referring to Fig. 51, the pre-negotiation process is described. After an
initiator INA requests negotiation terms (5110), an INA micro-agent is launched (5120) and 
the initiator INA moves to other locations in order to communicate with other INAs (5130). 
Several INAs, designated as SI (5140), S2 (5145 and Sn (5150) enter into a pre-negotiation 
process with the initiator INA over parameters of the interaction session, including 

10 location(s), protocols, rules and methods (5160). If they do not agree on the negotiation
parameters, they continue to interact until they do agree on these issues. The INAs agree on 
the rules of negotiations, the number of negotiation sessions and so on, based on the 
constraints (5170) and the initiator INA proceeds to the negotiation sessions with the other 
INAs based on these pre-negotiation protocols, rules and methods (5180).

15 [0314] In reference to Fig. 52, INA logistics are described. After initiating the
session (5210), agents are generated and identified by codes (5215). The initial agent 
interaction protocols are generated (5220) in order for the agents to establish a common 
communication methodology. Such communication processes involves translation (5225) 
and synchronization (5230). Failure to synchronize communication leads to a termination at 

20 5245. Once fully synchronized, INAs may construct unique negotiation strategies using AI
(5240) utilizing analytical agents (5235). At this point, agents signal the intention (5250) to 
negotiate with other agents. After signaling to other agents, INAs send out communication 
streams (5255) to their home base, thereby constantly revealing to the home base their 
locations, status and plans. At this point, the initiator INA enters into a pre-negotiation 

25 session with the selected INAs (5260) and launches micro-agents to negotiate with INAs at 
different locations (5265). The INAs then enter into the negotiation process (5270) and either 
cease negotiation (5275) or come to an agreement (5280). If they cease negotiation, the INA 
settings are saved for later (5285) and the session closed. On the other hand, if there is 
agreement, the MRA functions are activated consistent with the agreement reached (5290).

30 [0315] Figs. 53A and 53B illustrate the negotiation process in a distributed system
with mobility between INAs. The present example focuses on a one-to-one negotiation 
between an initiator INA and INA 2. After an initiator INA initiates a negotiation session
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with INA 2 (5310), the INAs identify possible locations (5315) and specify agreed locations 
(5320) at which to negotiate. In the illustrated example, the initiator INA moves to INA 2’s 
location (5323) with program code. INA 2 identifies incoming initiator-INA entry after 
activation and security protocol approval (5326) at INA 2’s location.

5 [0316] The agents engage in (5330) and complete (5333) negotiation tasks, after
which the initiator INA notifies its home MRA of its remote location activities by sending a 
message (5336). After reviewing more tasks at the remote INA 2 location (5340), the 
initiator INA either terminates (or returns home) (5343) or assesses additional tasks using 
internal database and analysis (5347), assessment (5350) and identification (5353) of the next

10 location for task execution and moves to another location (5356).
[0317] After moving its program code (5360), the initiator INA identifies a need for 
AI computation (5363), requests AI computation resources at a specified location (5367), 
identifies available AI computation resources (5370) and messages a request for AI 
computation resources to be sent to a specific location (5373). The initiator INA receives

15 (5377) and tests the AI computation resources at a specific negotiation site (5380). The
negotiations are completed at the remote location (5385) and the initiator INA returns home 
(5390).
[0318] As shown in this figure, though a one-to-one interactive negotiation is shown 
between an initiator INA and another INA, an initiator INA (or its micro-agents) may

20 negotiate simultaneously with at least two INAs at two or more INA locations in another 
embodiment.
[0319] Fig. 54 shows a simultaneous multi-lateral negotiation process with multiple 
variables. At each phase in the process, denoted on the left column, INA 1 is in the position 
of negotiating with six INAs, listed here as 2 through 7. In the first phase, after negotiation

25 with INA 2 in the first session, INA 1 negotiates with INA 3 in the second session. In the
third session, INA 1 negotiates simultaneously with INA 2 and INA 3 on the second phase of 
negotiation with each. In session four, however, INA 1 begins to negotiate with INA 4, while 
it continues to negotiate with INA 2 in a third phase. Similarly, in the fifth session, INA 1 
continues to negotiate with INA 4 in a second phase, while it begins to negotiate with INA 5

30 in a first phase. The sixth session continues this approach of continuing with INA 5 in a 
second phase while it initiates a negotiation with INA 6, and so on in session seven.
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[0320] Fig. 55 shows multivariate negotiation factors in which, in the first phase,
MRA 1 negotiates over specific variables with MRA 2, rejecting successive possible 
variables until finally agreeing on, and thus selecting, “Z”. In the second phase, MRA 2 
negotiates over specific variables with MRA 3 in a similar way, also resulting in the

5 agreement over, and selection of, “Z”. This process of negotiating over a number of factors 
shows the key element of “convergence” to negotiation. By repeating this process a number 
of times, many IN As may agree with each other about numerous factors in a complex 
dynamic system.
[0321] Fig. 56 shows the tournament style winner determination process in a

10 competitive INA framework. Several INAs (2 through 5) enter into a negotiation with an 
initiator INA (5650) in phase one. The initiator INA agrees to narrow down the field to INA 
2 (5660) and INA 4 (5670) in phase two. Between these finalists, the initiator INA then 
selects the winner, INA 4 (5690) in the third phase.
[0322] The argumentation process is shown in Fig. 57. During consecutive temporal

15 phases of a negotiation process between MRA A and MRA B, several key factors are isolated
and accepted by each MRA. First, negotiation variables are accepted by MRA B. Second, 
MRA A prunes out variables that it will not compromise on. Next, MRA B prunes out non- 
negotiable variables. Finally both MRAs determine the key variables that the will 
compromise on.

20 [0323] Negotiation is a process that fits into the overall game theoretic model that
organizes competitive agents across limited goods. In this sense, negotiation involves agent 
strategies that anticipate opposing agent strategies. Fig. 58 shows the anticipation of 
opposing INA strategies. After INA1 presents an argument to INA2 (5810), INA 2 evaluates 
the argument (5830) using multi-variate analysis and regression analysis (5820). INA2

25 anticipates INA1 ’ s strategy by examining the traj ectory of arguments (5840), which it
performs by identifying cues to anticipate behavior in its environment (5850). INA 2 then 
presents a counter-argument to INA 1 (5860). INA 1 anticipates INA 2 s strategy by 
anticipating its possible argument scenarios (5870) and the INAs eventually reach an 
agreement (5880).

30 [0324] Figs. 59 through 67 describe group problem solving.
[0325] In Fig. 59, problems are identified by MRAs and the collective agrees to
narrow the focus of the problem. Any MRA in the group can identify a problem (5910), in
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sequence, such as “How to carry out a mission with other MRAs?” (5920), “How to combine 
with other MRAs for a common mission?” (5930), “How to target an object with a group of 
MRAs?” (5940) or other mission or goal based problems (5950). The group of MRAs 
prioritize problems by assigning values to each problem and ordering them by rank in real 

5 time (5960) so that potential solutions can be made in the ranking order (5970).
[0326] Solution options between MRAs are described in Fig. 60. A shared four­
dimensional grid is created by MRAs in order to represent the framework of a potential field 
(6010). Simulation scenarios from the MRA group are tested in order to detect the best 
fitting solution for a specific option (6040) after analyses are performed on specific solution

10 options by MRAs (6030). A competition is then established between various potential 
solutions for the best solution available (6050) and weights are attached to each solution 
option (6060) which allows the simulation scenario solution options to be ranked (6070).
[0327] Fig. 61 describes the solution option selection method developed and applied 
by MRAs. An MRA develops a benchmark of methods in order to select a simulation

15 scenario (6110) and then applies an experimentation process to test possible solutions (6120). 
The shortest path option is selected as a default without environmental interaction (6125).
But the MRAs interact with the environment (6160), a process that is informed by actual 
environmental change (6150). The MRAs receive the results of the environmental interaction 
(6170) and evaluate the results (6180). Each MRA has a distinct vantage and thus applies a 

20 unique analysis (6190). The MRAs prioritize the results by weighting them for probability of 
success and by ranking them in the order of highest probability (6130). The methods of 
solution selection are refined (6135) and a feedback loop is structured to apply continued 
experimentation, when combined with continued environmental interaction, in order to 
continue to refine the methods of solution selection. A winner is selected from the possible 

25 solution options (6140) and the optimal solution is selected for a possible scenario (6145).
[0328] There are times when an optimal solution to a problem is not possible. In
these instances, the best we can hope to achieve is the best available solution in a specific 
circumstance. Fig. 62 describes this process of selecting the best available, not the optimum, 
solution, to a problem, while waiting for the most recent relevant information. The MRAs 

30 work together to establish a list of solution options (6210), which are filtered according to 
constraints (6220) by time, optimization, combinatorial optimization, accuracy, quality of 
information and by pruning out what is not probable (6230). The MRAs then apply solution
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option methods (6240) which are refined by interaction with the environment (6250). The 
MRAs either (1) undergo a convergence of agreement (6250), in which case they select a 
specific simulation scenario solution option (6275) and carry out a mission (6285), (2) 
partially agree with an overlap of interests within constraints (6260) and (3) temporarily 

5 agree (within constraints) (6265), in which cases they select merely the best available
simulation scenario solution option (6280) and carry out a mission within these constraints 
(6290). On the other hand, the MRAs, may not agree at all (6270), in which event they must 
return back to the earlier phases of the process of filtering the solution options (at 6220). Fig. 
63 shows an illustration of MRA group agreement.

10 [0329] In Fig. 63, part (A), three MRAs present arguments that are represented as
small circles within the larger circles. The gray area that shows the overlap of the three 
MRAs signifies the common interest between the three. In the second diagram at (B), the 
best available optimum scenario is shown in the gray area with time constraints. The 
configuration of this optimum window of opportunity, because it is time constrained, changes 

15 with the changing circumstances of the environment.
[0330] Clearly, the time aspect of the decision process is important because perfect
information is rarely available and because agents in a multi-robotic system that interact in 
uncertain and dynamic environments benefit from waiting for the latest available information 
before deciding to act. Fig. 64 shows the temporal aspect of the decision process, with the 

20 left column representing the temporal component, the second column representing the
physical state of the multi-robotic system and the right column representing the analytical 
state of the multi-agent system. In the first line, past physical experiences influence past data 
flows, while past data flows affect future scenarios. Future scenarios affect present analysis 
and decision-making, which influence the selection of a preferred scenario of action. This 

25 section of the preferred scenario influences the present course of action. In this way, the 
analytical and physical states of the system have causal connections over time. These 
interconnections reveal the integration between the MAS and MRS.
[0331] The group problem solving process requires specific analytical methods, 
including multivariate analysis, regression analysis, trend analysis and pattern analysis, in

30 order to select a successful candidate. Figs. 65, 66 and 67 describe these analytical tools.
[0332] In Fig. 65, multivariate analysis is applied to problem solving. A problem is 
forwarded to an MVA filter (6510), which strips the variables from the problem and analyzes
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each variable in isolation (6520). The MVA filtering process forwards the variable analysis 
procedure to multiple MRAs (6530) using parallel processing, where each MRA analyzes 
variables and compares this analysis with other MRA analyses (6540). The MRAs rank the 
multiple variables and share with the results between the MRAs (6550). The variables are 

5 evaluated in each solution option (6560) and the best available solution is selected from 
solution options (6570).
[0333] In Fig. 66, regression analysis is applied to the problem solving of conflicting 
MRAs for a winner determination. The MRAs analyze a problem with a regression analysis 
filter (6610), sort through various variables (6620) and share the data between them (6630).

10 Again, the MRAs divide the analysis between them in order to benefit from the advantages of 
parallel computation. The MRAs weight the variables by establishing priorities and 
comparing each variable with program parameters (6645). The MRAs evaluate the 
importance of the variables by comparing them with data sets in the distributed database 
(6650) and then rank the priorities of variables (6660) and apply the ranking of the problem 

15 variables to solution options (6670). MRAs select the best solution option by applying the 
program parameters (6680).
[0334] In Fig. 67, pattern analysis and trend analysis are applied to problem solving 
of conflicting MRAs for winner determination. Depending on which type of analysis is 
required, a problem is formulated (6710) and either pattern analysis (6720 and 6730)) or

20 trend analysis (6725 and 6735) is applied. The pattern analysis approach analyses regularities 
in spatial coordinates using statistical methods (6740), while trend analysis analyses 
regularities in temporal coordinates using statistical methods (6745). In either case, each 
analysis is evaluated (6750), the results ranked (6760) and the analyses are applied to MRA 
decision logic (6770). The MRA group then makes a decision based on these analyses and 

25 formulates a plan (6780) that the group is able to activate (6790).
[0335] Much of the substance of the problem solving, and negotiation, processes 
underlying inter-MRA conflict involves simulations. Because MRAs are mechanical entities 
that assume physical shape and mobility in space and time, it is possible to model them by 
using simulations. The MRS may use a number of types of simulations, including cellular

30 automata simulations, particle simulations and game theoretic simulations. All three main 
types of simulation add valuable qualities to the representation of complex activities in a 
mobile distributed multi-robotic system, including structuring the dynamics of aggregation
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processes. Figures 68 through 73 describe the cellular automata simulation of MRA group 
activities.
[0336] Cellular automata (CA) is a system of cells which are represented digitally as 
a binary unit or vacuum. As objects move through a grid, they fill up the space in the cell. If

5 an object does not occupy a cell, it is empty. In this straightforward way, CA can simulate 
groups of objects in space and time. CA’s may include two dimensional, three-dimensional 
or four-dimensional (i.e., including the time dimension) structures. Once including the time 
dimension, it is possible to model CA simulations. CA simulations are well suited to 
represent mobile distributed multi-robotic systems because the MRAs are seen as merely 

10 objects that move in space and time across a map in a nonoverlapping environment. Though 
the simulations may be complex, for instance, in modeling dynamic coalitions in adaptive 
sequences as they interact with a fast changing environment, their representation is critical in 
order to provide a mechanism for the self-organization of the MRS processes.
[0337] Fig. 68 shows the modeling of MRS activity with simulations in a situation 

15 assessment. As the illustration shows, a cubic space is occupied by mobile agents,
represented here as A, B and C. In the case of this situation assessment, the map describes 
the change in spatial position of the agents from A1 to A2 to A3 (6840), from B1 to B2 to B3 
(6850) and from Cl to C2 to C3 (6860).
[0338] Fig. 69 describes synchronizing simulations within an MRA cluster. An MRA 

20 sensor detects other MRA locations (6910) and converts the analogue sensor data to a digital
form (6920). The MRA data about other MRA positions is analyzed in real time to show 
phase state changes (6930) and a simulation is constructed to represent data about MRA 
position changes (6940). Each MRA continuously tracks all MRAs in the system in real time 
(6950) by using this approach and each MRA constructs a simulation to represent MRAs in 

25 the system (6960).
[0339] Fig. 70 describes a CA scenario option simulation. Two scenario options are 
presented for A and B. For scenario option A, MRA 1 (7010) and MRA 2 (7020) move 
across four phases to objects X and Y. For scenario option B, MRA 1 (7030) and MRA 2 
(7040) move across the four phases towards objects X and Y but in a different path.

30 [0340] Fig. 71 describes a reversible, or deterministic, CA in which a simulation is
constructed by projecting backwards from a goal. Though the scenario option representations 
look very similar to figure 70, the phasal process that is used is exactly opposite the causal
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approach. Rather, in this simulation model, the MRAs begin with the goal and project 
backwards. By using this reversible approach, the CA simulation is presented with a more 
goal-oriented solution.
[0341] Fig. 72 shows how adaptive geometric set theory is applied to an MRS. The 

5 three CA models of A (7210), B (7220) and C (7230) show three different sequences from
one to three reflecting different positions. In the converged model (7240), a combination of 
the three models is reached which synthesizes the three by compromising the outcomes of B 
and C. Geometric set theory is useful to represent the overlap of aggregated sets.
[0342] Fig. 73 shows the selection of an optimal simulation as a (temporary)

10 convergence of simulation scenarios. MRA 1 is represented by actual positions at 1’, 1 ,1 
and 1” ” (7320) while a possible scenario is represented by 1R” , 1R’” and 1R’” (7310). 
Similarly, for MRA 2 (7330) and the possible simulation scenario (7340). Finally, the 
outcome for these sequences is a convergence of MRA 1 at 7325 and of MRA 2 at 7335.
[0343] Figs. 74 through 78 describe the aggregation process in a multi robotic system. 

15 Figures 75 through 84 describe the dynamic coalition (or reaggregation) process in a MRA
and figures 85 through 88 show autonomous MRS self-organizing processes.
[0344] Fig. 74 describes the aggregation initiation process in which sets of MRAs 
form from a larger collective. The MRAs develop and present simulations (7410), test the 
simulations (7415), prune out the least useful simulations (7420), and compare the best

20 simulations with the environment (7425) and with (updated) program parameters (7430).
The best simulations (within constraints) are selected (7435) and converged (7450) in order 
to create overlap. From the converged simulations, a map is created (7455) and individual 
MRA locations are identified relative to their positions on the map (7460). The MRAs then 
move their physical locations in an efficient way according to the geometric location of the 

25 converged simulation map (7465).
[0345] The initiation of homogenous MRA group formation is described in Fig. 75. 
In the first (top) section, an object X (7510) is confronted with seven similar MRAs (7520). 
After undergoing an aggregation initiation phase, the MRAs (7540) are shown in the second 
section as changing their position with regard to object X (7530) by moving towards the

30 object.
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[0346] In Fig. 76, the initiating process is shown involving common heterogeneous 
MRAs. In the first phase, an MRA with type “S” (7610) initiates a group of specialized 
MRAs (7620). In the second phase, the “S” MRAs (7630) concentrate in order to perform a 
specific task, while the other types of MRAs (7640) retain their positions. In this case, a 
particular type of specialized MRA is “picked out” in order to perform a specific function as 
a specialized unit.
[0347] In Fig. 77, a complementary heterogeneous MRS group formation initiation is 
described. In the first phase, the MRA with type “S” (7710) initiates a group of specialized 
MRAs in a similar was as with common heterogeneous MRAs. However, rather than 
attracting the same “S” type, it requests the “Y” and “T” types (7730) from the second 
column which leaves the other MRAs in their stable positions (7740). In this way, 
complementary specialists may work together as a team to perform complex functions in 
tandem.
[0348] The first phase of a demand-initiated environmental adaptation is described in 
Fig. 78. From the combination of static environmental data maps (7830) and actual 
environmental changes (7820), dynamic environment data maps (7825) are created. These 
maps inform past and present simulations (7850), which are analyzed (7840). The analysis is 
itself informed by learning methods (7810). Given the simulations and their analysis, 
negotiations occur between the MRAs (7855), which reach a decision, within limits (7865). 
This decision is also informed by limited (converged) scenario simulations (7870). Once a 
decision is made by MRAs, the selection is made about the specific form of aggregation to 
use (7875) and the actual special positions of the MRAs are changed in accordance with this 
new decision (7880).
[0349] In Figs. 79 to 84, dynamic coalitions, or re-aggregation processes, are 
discussed. In Fig. 79, the continuous MRA group composition reconfiguration process is 
described. In the first phase, a group is concentrated (7910) that includes MRAs 1, 2, 3 and 
4. In the second phase, a new grouping is organized (7930) that includes MRAs 3,4, 5 and 6. 
Finally, in the final phase, yet another grouping is organized to include MRAs 4, 5, 6, 7 and 
8. The movement through the system from the left part of the group to the right part of the 
group illustrates the changing interaction response to the environment that requires the 
grouping to adapt to different sub-sets of the larger collective.
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[0350] In Fig. 80, the continuous reconfiguration of sub-networks is described. In
this figure, the right column shows an object that the MRA group(s) on the left move 
towards. The first phase of the process is identified in the right column. In the first part of 
the process, at 8005, the first sub-set of the collective moves towards the object. In a second 
phase, the MRAs reconstitute the configuration of the MRA grouping (8010) and move 
toward the object. In a later phase, in the middle map, a larger initial grouping, including six 
MRAs (8015) move toward the object, while a second grouping (8020) moves to the object 
later. This second group includes the overlapping two members of both groups. However, in 
the third part of the process, the demand for MRAs changes again from the second part of the 
process. In this case, five MRAs move toward the object, while a grouping including six 
MRAs (including the last three of the first phase) move towards the object. This figures 
illustrates the dynamic motion aspect of the aggregation process as coalitions are dynamically 
created and reconfigured.
[0351] Fig. 81 illustrates dynamic group behavior adaptation to environmental 
interaction. In the first phase, the first MRA grouping (8120) moves towards a group of 
objects (8130). In this first phase, one object is knocked out, represented by an X, but two 
MRAs are also removed. In the second phase, the reconstituted group of MRAs (8150), 
which includes the combination of 8120 and 8110, move towards two more objects in the 
group of objects (8160) and three MRAs are removed from action, as represented by an X’s.
In the third phase, the newly reconstituted MRA group (8170) that includes a combination of 
8150 and 8140, move towards the three remaining objects (8180).
[0352] The parallel dynamic traveling salesman problem is described with 
cooperating autonomous agents in Fig. 82. After they receive a sensor data stream (8210), a 
group of MRAs collect environmental data by sharing sensor data (8240) and use the initial 
prioritization of environmental data consistent with program parameters (8250). As the 
environmental data changes (8270), an interaction between MRAs and the environment 
occurs (8820) which informs the MRA sensor data stream (8210). The environmental data 
changes (8270) also reprioritize the order of priorities with the latest information of a 
changing environment (8280); this reprioritization of the order of priorities are largely based 
on the MRAs’ prioritization of a physical sequence (8260) based on a reprioritization of 
MRA program parameters (8230). Once the reprioritization of priorities with the latest 
information (to accommodate a changing environment) occurs, the MRAs perform a physical 
sequence of actions in the order of priority (8290). This process involves a dynamic
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connection between the analytical functions of the MAS and the physical processes of sensor 
data gathering from multiple changing MRA positions that yields variable data inputs from a 
changing environment. Because the MRS is distributed, the use of parallel processing allows 
increasingly efficient processing of computation resources. Figure 64 also illustrates a data

5 flow process that accommodates both physical state and analytical state dynamics across 
time.
[0353] Fig. 83 shows altruistic MRAs sacrificing themselves in order to acquire 
sensor information to increase the chances of overall mission success. The MRAs shown 
with an X, move toward the object (8320) and are knocked out. However, the information

10 that is obtained in this gambit mission is then sent back to the collective so that they are better 
able to defeat the object.
[0354] The general dynamic coalition process is described in Fig. 84. After mission 
goals and parameters are established (8455), sensor data and various sources examine the 
terrain (8460). The simultaneous parallel computation by numerous agents is performed by

15 sharing data and by dividing computation resources (8465). The sensor data is then evaluated 
by various MRAs (8470). Groups of MRAs begin to emerge by agreeing to aggregate 
(8475). Decisions are made to form smaller groups in order to meet evolving mission 
parameters and priorities. Specified MRAs update the navigation plans and activate the 
mission (8485). As the mission evolves, groups of MRAs are added or removed as needed,

20 for instance if the opposition is particularly hostile (8490).
[0355] Fig. 85 describes the group coordination and obstacle avoidance process that is 
involved in autonomous MRS self-organizing processes. Obstacles X, Y and Z (8510) move 
towards MRAs A, B and C (8550) from their initial positions. As the objects get closer, at 
8520, the MRAs detect the objects as obstacles, at 8540, and begin to avoid them by moving

25 out of the trajectory of the moving objects (8530).
[0356] In Fig. 86, specific MRAs A (8610), B (8630) and C (8650) move towards 
specific objects X (862), Y (8640) and Z (8660), with A attacking Z, B attacking X and C 
attacking Y. This specialization of a self-organizing process is further developed in Fig. 87 
as a specialized group of MRAs work together as a team. MRAs A (8710), B (8720), C

30 (8780) and D (8790) move into positions 8730, 8740, 8760 and 8770, respectively, in a phase
in the process towards assembling together at 8750. In this position, the specialized MRAs 
work together sharing specific functions for greater usefulness on a mission. In Fig. 88,
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multi-functional MRAs are described in a self-organizing process. Whereas in figure 87, the 
MRAs are specialized, in figure 88, the MRAs have multiple functions that may switch in 
specific changing circumstances. As the figure shows, MRA A in position A1 (8810) and 
MRA B in position B1 (8850) move towards object X (8830). As they move towards the 

5 object, the MRAs detect the need to change from one specialized function to another. At 
positions A2 (8820) and B2 (8840), the MRAs change their functional mode to a different 
specialty in order to be more effective in their mission against the object.
[0357] Figs. 89 through 99 describe specific applications of the present system.
There are three main categories of application, including (1) remote sensing (described in

10 Figs. 89 to 92), (2) hazard management (described in figures 93 to 95) and (3) building
processes (described in Figs. 96 to 99). Remote sensing activities that use an MRS include 
surveillance, reconnaissance, remote exploration, sentry activities and cinematography. 
Hazard management activities include toxic site clean-up, oil spill and fire fighting activities. 
Building processes include manufacturing production and assembly, road building and 

15 surgical activities.
[0358] In Fig. 89, surveillance and reconnaissance is described using multiple micro 
objects for sensing and tracking of a mobile object. As two MRAs, X (8910) and Y (8960) 
move in parallel tracks to positions X2 (8920) and Y2 (8970), respectively, they track object 
A (8940). As the object moves to position A2 (8950) and then to position A3 (8955), MRA

20 X moves to position X3 (8930) and then to position X4 (8935), while MRA Y moves to 
position Y3 (8980) and then to position Y4 (8990) by using sensors and by tracking the 
object closely.
[0359] In Fig. 90, a remote exploration process is described in which the initial 
tracking of multiple objects is performed by multiple micro-MRAs. In this example, MRA1

25 (9010) moves towards object R1 to position X’. However, the object itself moves, from
position R’ to position R” and is followed by the MRA, which moves to position X . This 
process is repeated with MRA 2 (9020) tracking object R2 (9060) and with MRA 3 (9030) 
tracking object R3 (9070).
[0360] Fig. 91 describes sentry activity within limited perimeters defending multiple 

30 objects with a multiple number of MRAs. In this illustration, the MRAs are spaced evenly
apart in order to occupy a constrained field around the perimeters of a field.
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[0361] The current system is also applicable to cinematography, wherein one mobile 
object (or cluster of mobile objects) are sensed and tracked with MRAs. This process is 
described in Fig. 92. MRA 1 (9210) and MRA 2 (9270) track object X (9240) as it moves to 
positions 9250 and 9260. MRA 1 tracks the object along a path to position 9220 and 9230,

5 while MRA 2 tracks the object along a path to position 9280 and 9290. This process may be 
variable so that as the object stops to pause, the MRAs stop as well. In this case, the MRAs 
have automated digital photographic capabilities with on-board auto-focus zoom lenses and 
data storage. The MRAs can be used to track multiple objects as well. One MRA may track 
the object(s) in a close in view while the other MRA(s) may track the object(s) from a

10 distance in order to obtain a different view of the same scene.
[0362] Fig. 93 describes a toxic site cleanup. In this case, a static cleanup occurs 
within land perimeters by multiple MRAs. In the first phase, A-type MRAs (9310) are used 
to confine a limited amount of toxic contamination (9320) in a specific physical space. The 
MRAs move by using a side-to-side sweeping approach. In the second phase, the spill (9340)

15 has been reduced and the MRS calls in the B-type MRAs (9330) in order to continue to
eliminate the contamination by using a similar sweeping technique. Finally, as the toxic spill 
(9620) is controlled in a finite space, the MRS calls in the C-type MRAs (9350) to complete 
the mop up operation.
[0363] In a similar way as cleaning up toxic spills on land, Fig. 94 describes a

20 dynamic clean up of an oil spill within limited hydro perimeters by multiple MRAs. In the 
first phase, the oil spill (9420) is surrounded by MRAs (9410), which operate to limit the 
damage and remove the oil. In the second phase, the oil spill is rendered smaller (9440) and 
MRAs (9430) continue to operate to remove the oil by operating in specific “cells” that act to 
sweep up the spill. This process continues in the final phase in which the oil spill (9470) is

25 confined and the final drops of oil are mopped up by the MRAs (9460).
[0364] Fig. 95 describes the automated fire fighting process in which dynamic 
interaction occurs with a complex environment by multiple MRAs. In the first phase of the 
process, MRAs (9510) are dropped to the fire (9520) on one faqade only (because the fire is 
initially inaccessible on the other side). As the MRAs (9530) are able to surround the fire

30 (9540), in the second phase, they seek to put it out by using several methods, including
removing brash that is flammable, by pouring fire retardant in a line around the fire and by 
directly pouring water on the fire. The MRAs may be air launched or ground launched and
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retrieved. In the final phase, the fire is reduced (9560) and the MRAs (9550) complete the 
task of extinguishing the fire.
[0365] Fig. 96 describes the manufacturing production process in which an object is 
created by using multiple MRAs. MRAs A (9610), B (9640), C (9650) and D (9630) work 
together to create the object (9620). One way to do this is for each MRA to attach parts of 
the object together from different spatial positions.
[0366] Fig. 97 shows the assembly of an object by using MRAs to combine the parts. 
At an assembly facility (9710), MRA A at position Al(9720) and MRA B at position B1 
(9730) act to assemble objects. Rather than having a movable assembly line, in this case, the 
MRAs themselves move. MRA A moves to position A2 (9740) and MRA B moves to 
position B2 (9750) in order to complete the assembly task. This process of organization of 
assembly tasks provides the opportunity for specialized functional MRAs to work together as 
a team in order to assemble objects by combining parts more quickly.
[0367] Roads can be built by using multiple MRAs as illustrated in Fig. 98. MRA A 
(9810) and MRA B (9820) proceed to create a road by laying down asphalt along adjacent 
tracks.
[0368] Fig. 99 describes micro surgery using MRAs for trauma intervention and 
stabilization. In this case, MRA A and MRA B guide themselves to the patient. Initially, the 
MRAs ascertain, by using sensors, the symptoms of trauma in order to identify problems.
The MRAs then move to various positions on the patient in order to solve the problems. In 
the case of a wound, the MRA will seek to stop the bleeding by cauterizing the wound with a 
laser or by applying pressure. In the case of heart stoppage, the MRA will administer an 
electric shock. By stabilizing a patient, the chances of recovery are dramatically higher.
[0369] It is understood that the examples and embodiments described herein are for 
illustrative purposes only and that various modifications or changes in light thereof will be 
suggested to persons skilled in the art and are to be included within the spirit and purview of 
this application and scope of the appended claims. All publications, patents, and patent 
applications cited herein are hereby incorporated by reference for all purposes in their 
entirety.

67



WO 2004/018158 PCT/US2003/026764

WHAT IS CLAIMED IS:

1 1. A multi-robotic system architecture having a plurality of system layers
2 interconnected to one another, comprising:
3 a first layer including a hybrid control system for a plurality of mobile robotic
4 agents (MRAs);
5 a second layer including a distributed mobile robotic system for the plurality
6 of MRAs;
7 a third layer including a grid computing architecture in a plurality of dynamic
8 clusters;
9 a fourth layer including a dynamic distributed object relational database

10 management system;
11 a fifth layer including an omni-nodal evolutionary artificial neural network;
12 a sixth layer including a multi-agent system and a plurality of intelligent
13 mobile software agents;
14 a seventh layer including a plurality of cellular automata simulations; and
15 an eighth layer including a plurality of functional applications.
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Fig 1: System Layers
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Fig 2: MRA Synthetic Hybrid Control System Architecture

Layer 4: 
Synthetic 
Control 
Models

Layer 3: 
Hybrid 
Control 
Models

Layer 2: 
Shared 
Control 
Models

Layer 1: 
Main 

Control 
Types

0210

Sheet 2 of 100



WO 2004/018158 PCT/US2003/026764

Fig 3: Dynamic Database Organization
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Fig 4: Identifying MRA Locations With Sensors
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Fig 5: Assessing Environmental Situation and 
Coordinating Change in MRA State
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Fig 6: Metacomputing Model for Distributed MRS: 
Flexible Mobile Grid Architecture in Dynamic Clusters
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Fig 7: Sharing Computation Resources Among MRA Nodes in 
Wireless Mobile MRS: Efficient Routing of Database and Analytical

Functions
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Fig 8: Database Coordination in Distributed MRS

0810

0880

Sheet 8 of 100



WO 2004/018158 PCT/US2003/026764

Fig 9: Dynamic Distributed Object Relational Database
Data Flow Process
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Fig 10: Temporal Objects in ORDbMS
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Fig 11: Mobile Grid Dynamics
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Fig 12: Autonomous Blackboards For MRAs
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Fig 13: IMSA Operations Control of MRAs
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Fig 14: MRA Juvenile and Adult Training Levels
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Fig 16: Learning From Environmental Interaction: Adaptation
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Fig 17: MRA Training Process - “ Experience” of Environmental 
Interaction Combined With Group Sensor Data
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Fig 18: Reinforcement Learning:
(A) Intensity of Sensor Data and (B) Quantity of Sensor Data
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Fig 19: Hybrid Learning Model With Time Constraints
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Fig 20: Social Learning: Learning From Inter-MRA Interaction
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Fig 21: MRAs That Teach Other MRAs
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Fig 22: Asymmetric MRA Leadership and 
the Emergence of Temporary Hubs
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Fig 23: Specialized Learning (in Teams): 
Division of Labor in Self-Organizing Groups
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Fig 24: Auto Specialization: Self Organization by 
Task Division for Individual Specialization
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Fig 25: Self Organizing Map
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Fig 26: Flow Chart of Genetic Algorithm
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Fig 27: Binary Genetic Algorithm Model
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Fig 28: Tree Architecture - Genetic Programming Model
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Fig 29: Parallel Subpopulations Fitness Evaluation
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Fig 30: Two Layer Neural Network
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Fig 31: Artificial Neural Network Connection Weights
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Fig 32: Genetic Programming Calculates Initial Weights
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Fig 33: Genetic Programming Applied to Indeterministic ANN
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Fig 34: Neuroevolution - Evolutionary A-NN Connection
and Node Additions
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Fig 35: Evolutionary A-NN Non-deterministic Feed Forwarded
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Fig 36: Evolutionary Search For Connection Weights in an ANN
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Fig 37: Fuzzy Logic Module
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Fig 38: Neuro Fuzzy Controller with 
Two Input Variables & Three Rules

(Rule
base)
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Fig 39: Five Layer Evolving Fuzzy Neural Network

Fuzzification Decision Layer
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Fig 40: Adaptive Network Based Fuzzy Inference System
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Fig 41: Self Organizing Neural Fuzzy Inference Network Architecture
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Fig 42: Dynamic Evolving Fuzzy Neural Network
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Fig 43: Flexible Extensible Distributed ANN - 
Shared ANN Computation Between MRAs
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Fig 44: IMSA Dynamics in MAS: MRA Interactions via IMSAs
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Fig 45: IMSA Relations Between MRAs
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Fig 46: Analytical Agents
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Fig 47: Search Agents
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Fig. 48: Intelligent Negotiation Agents
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Fig 49: IMSA Intercommunication
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Fig 50: INA Architecture
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Fig. 51: Pre-Negotiation
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Fig. 52: INA Logistics
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Fig. 53A: Negotiation in a Distributed System with Mobility
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Fig. 53B: Negotiation in a Distributed System with Mobility
(Continued)

5356

Sheet 54 of 100



WO 2004/018158 PCT/US2003/026764

Fig 54: Simultaneous Multi-lateral Negotiation Process 
with Multiple Variables
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Fig 55: Multivariate Negotiation Factors
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Fig. 56: Winner Determination in Competitive INA Framework
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Fig 57: Argumentation Process
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Fig 58: Anticipating Opposing INA Strategies
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Fig 59: Identify Problems: Group Agrees To Narrow Focus
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Fig 60: Develop Solution Options Between MRAs
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Fig 61: Solution Option Selection Method
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Fig 62: MRAs Select Best Available (not Optimum) Solution 
To Problem in Present Circumstance While Waiting 

For Most Recent Relevant Information
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Fig 63: MRA Group Agreement

(A) Common interest
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Fig 64: Temporal Aspect of Decision Process
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Fig 65: Applying Multivariate Analysis to Problem Solving
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Fig 66: Applying Regression Analysis to Problem Solving 
of Conflicting MRAs for Winner Determination
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Fig 67: Applying Pattern Analysis and Trend Analysis to 
Problem Solving of Conflicting MRAs for Winner Determination
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Fig 68: Modeling MRS Activity with Simulations- 
Situation Assessment
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Fig 69: Synchronizing Simulations Within MRA Cluster
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Fig 70: Contingency CA Scenario Option Simulations
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Fig 71: Reversible (Deterministic) CA-Projecting Backwards From A Goal
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Fig 72: Adaptive Geometric Set Theory Applied To MRS
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Fig 73: Selecting Optimal Simulation- 
temporary) Convergence of Simulation Scenarios
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Fig 74: Initiation of Aggregation Process - 
Sets of MRAs Forming From Larger Collective

7410

Sheet 75 of 100



WO 2004/018158 PCT/US2003/026764

Fig 75: Initiating Homogeneous MRA Group Formation
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Fig 76: Initiating Common Heterogeneous MRA Group Formation
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Fig 77: Initiating Complementary Heterogeneous
(Specialized) MRA Group Formation
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Fig 78: Demand Initiated Environmental Adaptation: Initial Phase
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Fig 79: Continuous MRA Group Composition Reconfiguration
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Fig 80: Continuous Reconfiguration of Sub-networks 
(Scalable Capacity Increases and Decreases)
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Fig 81: Dynamic Group Behavior Adaptation 
to Environmental Interaction
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Fig 82: Parallel Dynamic Traveling Salesman with 
Cooperating Autonomous Agents

8210 8240

Sheet 83 of 100



WO 2004/018158 PCT/US2003/026764

Fig 83: Sacrificing (Altruistic) MRAs in Order to Acquire Sensor 
Information to Increase Chances of Overall Mission Success
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Fig 84: General Dynamic Coalition Process
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Fig 85: Group Coordination and Obstacle Avoidance
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Fig 86: Specialization: Specific MRA Functionality
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Fig 87: Specialized MRAs Working As A Team
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Fig 88: Multi-functional MRAs in Self Organizing Process
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Fig 89: Surveillance & Reconnaissance - Mobile Object 
Sensed & Tracked By Multiple Micro-MRAs
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Fig 90: Remote Exploration: Initial Tracking of Multiple Objects
With Multiple Micro-MRAs
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Fig 91: Sentry Action - Limited Perimeters - Defending Multiple
Objects With Multiple MRAs
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Fig 92: Cinematography - One Mobile Object (or Cluster of Mobile 
Objects) Sensed and Tracked with MRAs
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Fig 93: Toxic Site Cleanup - Static Cleanup 
Within Land Perimeters by Multiple MRAs
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Fig 94: Oil Spill: Dynamic Cleanup Within Limited 
Hydro Perimeters by Multiple MRAs
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Fig 95: Fire Fighting - Dynamic Interaction 
With Complex Environment by Multiple MR As
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Fig 96: Manufacturing Production: 
Object Creation Using Multiple MRAs
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Fig 97: Assembly: Combining Parts To Create 
Whole Object Using Multiple MRAs
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Fig 98: Building Roads: Road Creation Using Multiple MRAs
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Fig 99: Surgical Micro MRAs for Trauma Intervention & Stabilization

Sheet 100 of 100


