
US007047425B2

(12) United States Patent
Dubuque

(io) Patent No.: US 7,047,425 B2
(45) Date of Patent: May 16, 2006

(54) SCALEABLE MUTI-LEVEL SECURITY
METHOD IN OBJECT ORIENTED OPEN
NETWORK SYSTEMS

(75) Inventor: Mark W. Dubuque, Town & Country,
MO (US)

(73) Assignee: The Boeing Company

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 252 days.

(21) Appl. No.: 10/198,862

(22) Filed: Jul. 19, 2002

(65) Prior Publication Data

US 2004/0015720 A l Jan. 22, 2004

(51) Int. Cl.
H04L 9/00 (2006.01)
G 06F 15/173 (2006.01)
G 06F 15/16 (2006.01)

(52) U.S. Cl.......................... 713/200; 713/201; 713/160;
713/161; 709/225; 709/227; 709/229

(58) Field of Classification Search 713/200 202,
713/168, 155, 160, 161; 709/225, 227, 229

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,621,733 A * 4/1997 Rooth 370/392
6,178,505 B1 * 1/2001 Schneider et al................ 713/168

* cited by examiner

Primary Examiner—Matthew Smithers
Assistant Examiner—Courtney D. Fields
(74) Attorney, Agent, or Firm—Black Lowe & Graham
PLLC

(57) ABSTRACT

A system and method are provided for securely transferring
data between applications over a network. According to one
embodiment, a receive site address on a server is selected
based on a first IP address/object filter table and a desired
security level. A data payload for transmittal is defined the
data payload is encrypted for transfer and the encrypted data
payload is transmitted from a send site address over a
network to the receive site address. The transmitted
encrypted data is only received at the receive site address by
decrypting the data payload and accepting the data based
upon a second IP filter table and the address of the send site.

23 Claims, 5 Drawing Sheets

Workstation Server

5 - v ^ - U .

/ x
j Distributed \

Computer [
\ Network /
\ /

Server

US007047425B2

U.S. Patent May 16, 2006 Sheet 1 of 5 US 7,047,425 B2

Workstation Server

5

Server

10-y FIG. 1

11a> 11tf\ 11c^

Q
m

U.S. Patent May 16, 2006 Sheet 2 of 5 US 7,047,425 B2

System Memory

(ROM) 24
BIOS 26

(RAM) 25
Operating System

35

Application Program
36

Other Program Modules
37

Program Data
38

Processing
Unit
21

Video
Adapter

48

Network
Interface

53

Hard Disk
Drive

Interface
32

Optical
Disk Drive
Interface

34

11

Mag Disk
Drive

Interface
33

Operating Application Other Program
System Programs Program Data

35 36 21 38

FIG. 2

U.S. Patent May 16, 2006 Sheet 3 of 5 US 7,047,425 B2

FIG. 3

U.S. Patent May 16, 2006 Sheet 4 of 5 US 7,047,425 B2

FIG. 4

U.S. Patent May 16, 2006 Sheet 5 of 5 US 7,047,425 B2

FIG. 5

US 7,047,425 B2

SCALEABLE MUTI-LEVEL SECURITY
METHOD IN OBJECT ORIENTED OPEN

NETWORK SYSTEMS

FIELD OF THE INVENTION

This invention relates generally to computer networks
and, more specifically, to computer network security.

BACKGROUND OF THE INVENTION

Data is a pervasive concept. Networks carry data com­
prising anything from voice communication, to video
images, to high-level calculation results. Transfer of data
across networks has supplanted the use of common office
fixtures such as the telephone and fax machine. Networks
have become the backbone of business communication.

The database paradigm has been the basis of a revolu­
tionary concept in computer program development, that is
the use of packaged groups of executable code and accom­
panying data. To invoke an object is to perform an operation
on it, the invocation resulting in another data object. Unlike
the “series of verbs” programming style, Object Oriented
Programming (“OOP”) is organized around “Objects” rather
than “Actions”—data rather than logic.

Historically, computer programs have manipulated data
according to a paradigm that views the logical procedure
that it takes to input data, process it, and produce output data.
Programming, then, became a long vulnerable chain of
interdependent manipulations of the data. Changing a single
step often required re-drafting elaborate subroutines. Object
oriented programming tends to package objects by defining
the data it contains and any logical sequences that can
manipulate that data.

Common Object Request Broker Architecture (CORBA)
takes the logic one step further. If every computer platform
in a network is standardized by a series of software drivers
such that a logical operation performed on an object has the
same result regardless of which platform performs the
manipulation, tying multiple platforms onto a single net­
work is easily accomplished. In CORBA, standard off-the-
shelf computer programs written in one language or another
are wrapped with software making them objects. Invocation
with a standard call to the wrapped software results in a
standardized response, even if the program would not so
respond in its native environment. While the program acts as
though it is on its normal platform, it looks to the CORBA
operating system like just another of its objects.

Objects exist on a network. The network is a series of
computational platforms communicatively tied together.
Invocation of an object on the network evokes the same
response, regardless of which platform in the network
invoked the object. Sending and receiving those objects on
the network facilitates the use of those objects by any of the
several platforms within the network. Thus, the CORBA
standard allows for a powerful network with diverse plat­
forms.

As defined, any platform in the network that has access to
the objects can perform the manipulations of data. However,
the network strength is also its weakness. Any platform on
the network can invoke an object and either publish or
modify the data it finds therein. In a closed network among
trusted platforms, the need for security of the objects is not
as pronounced as on an open network. To span great
distances, to access the Internet, or to provide access at
remote locations, a network must be open. The dichotomy is
pervasive. The more accessible the network is, the more

1
useful it is. To that end, a security system is necessary to
protect the objects in an object-oriented network.

Where access to a network either cannot or is presumed
not to be controlled reliably, an alternate means of securing
data within the system is needed. There exists, therefore, an
unmet need in the art for imposing security on an object-
oriented network without impairing the network’s accessi­
bility.

SUMMARY OF THE INVENTION

A system and method are provided for securely transfer­
ring data between applications over a network. According to
one embodiment, a receive site address on a server is
selected based on a first IP address/object filter table and a
desired security level. A data payload for transmittal is
defined the data payload is encrypted for transfer and the
encrypted data payload is transmitted from a send site
address over a network to the receive site address. The
transmitted encrypted data is only received at the receive site
address by decrypting the data payload and accepting the
data based upon a second IP filter table and the address of
the send site.

Object and socket filters act as a pass/no-pass gauge
indicating whether data will be used in the system. If data
comes from an expected site invoked by the appropriate
application, the filter indicates that the data is reliable.
Because the filter table can be dynamically changed, data is
only reliable while it is “hot.” Where an application or
platform requests data from an address that is not reliable
according to the filter table, that interaction provides a
trackable breach of security. Thus, the filters provide infor­
mation for monitoring and recording attacks. The filter could
also use typical dynamic IP switching techniques as a
response to attack or as a way to prevent monitoring.

Multiple filters can be used to provide multiple levels of
security. Thus, within a certain filter table, designations of IP
addresses may have greater or lesser tolerance or may be
changed with greater or lesser frequency in order to effect
security. By the same token, distinct groups on a network
may have distinct filter tables thereby allowing each security
independent of the others. A breach of one will not constitute
a breach of the several others that are operating on the same
network.

Further, the present invention does not necessarily require
a laige computing overhead. Designation of safe sites on a
network does not entail the use of lengthy algorithms. Thus,
the addition to standard encryption has a negligible impact
on the overall load. For this same reason, the invention
yields very good security even when implemented with
processors with limited capability, such as those on board an
unmanned drone, or even a handheld PDA.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred and alternative embodiments of the present
invention are described in detail below with reference to the
following drawings.

FIG. 1 shows an exemplary network;
FIG. 2 shows an exemplary client computer on the

network displayed in FIG. 1;
FIG. 3 is a flowchart showing use of the invention on the

server side of the network shown in FIG. 1;
FIG. 4 shows the interaction between the server and the

client; and
FIG. 5 shows the invention in a peer-to-peer network

environment.

2

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,047,425 B2

DETAILED DESCRIPTION OF THE
INVENTION

A system and method are provided for securely transfer­
ring data between applications over a network. According to
one embodiment, a receive site address on a server is
selected based on a first IP address/object filter table and a
desired security level. A data payload for transmittal is
defined the data payload is encrypted for transfer and the
encrypted data payload is transmitted from a send site
address over a network to the receive site address. The
transmitted encrypted data is only received at the receive site
address by decrypting the data payload and accepting the
data based upon a second IP filter table and the address of
the send site.

The following discussion is intended to provide a general
description of a suitable computing environment in which
the invention may be implemented. The invention facilitates
secure interaction between a personal computer or client in
connection with a server between clients, or between clients,
or between networks, or any combination thereof. Those
skilled in the art will recognize that the invention may also
be implemented in combination with other network configu­
rations. Generally, an embodiment of the invention wraps
program modules including routines, operating systems,
application programs, components, data structures, etc., that
perform read/write tasks or implement particular abstract
data modifications or transmittals. Moreover, those skilled in
the art will appreciate that the invention may be practiced
with other computer system configurations including hand­
held devices, multi-processor systems, microprocessor-
based or programmable consumer electronics, minicomput­
ers, mainframe computers, and the like.

The invention may also be practiced in distributed com­
puting environments where tasks are performed by remote
processing devices that are linked through a communica­
tions network. In a distributed computing environment,
program modules may be located in both local and remote
memory storage devices. Execution of the program modules
may occur locally in a stand-alone manner or remotely in the
relationship between clients and server. Examples of such
distributed computer environments include local area net­
works of an office, enterprise-wide computer networks,
wireless networks, and the Internet. So long as there exists
an appropriate means to synchronize the filter tables that are
described below, any communications network will serve.

FIG. 1 illustrates a typical client-to-server environment 10
in which an exemplary embodiment of the present invention
operates. A computer system or client 1, such as without
limitation, a conventional personal computer or any device
operable to communicate over a network, is connected to a
network server 3. The server 3 is generally provided in the
context of the Internet, by an Internet Service Provider
(“ISp”), provides Internet access for a typical Internet
user. The server 3 is connected to a distributed network 5
such as the Internet or a Wide Area Network (“WAN”), and
enables the client 1 to communicate via the distributed
network 5.

The client 1 communicates via combination of the server
3 and the distributed computer network 5 to a server 7, such
as a communication or an email server. In an exemplary
embodiment, the servers 3 and 7 support email services,
contain a message storer for holding messages until delivery,
and contain a translation facility or gateway for allowing
users having different email programs to exchange email.
The server 7 is connected to an internal network 9 such as
a Local Area Network (“LAN”) and enables the client 1 to

3
communicate with the clients 11a, 11 b, and 11c via the
internal network 9. The clients 11a, 11 b, and 11c are not only
able to respond to a communication from the client 1, but are
also able to initiate communication with the client 1. The
clients 11a, 11 b, and 11c can send information via the
internal network 9 to the server 7. The server 7, in turn,
forwards the information to the client 1 via the distributed
computer network 5. The information is retrieved by the
server 3 and can be forwarded to the client 1 when requested
by the client 1.

The client 11, however, need not be a standard computer
but any sort of computing appliance. For instance, a Portable
Digital Assistant (PDA) such as a Palm Pilot™ will readily
be able to send and receive data by the inventive means. The
network can be less traditional as well. In, for example, the
military context, the network might include an radio fre­
quency link to an Unmanned Combat Air Vehicle. A single
control station might be one client 11 using the distributed
network 5 to control multiple UCAVs. The inventive method
would allow networking securely over the broadcast radio
frequencies. Communications will be seamless with data
passed through a variety of paths. Wide area 5 and local
airborne networks 9 will allow redundancy among the force
package and bandwidth sharing to ensure robust connectiv­
ity with the control station via line-of-sight, relay extension
and/or satellite communications.

With reference to FIG. 2, an exemplary system for imple­
menting the invention includes a conventional personal
computer 11, which serves as a client. The client 11 may
represent any or all of the clients 1, 11a, 11 b, and 11c
illustrated in FIG. 1. The client 11 includes a processing unit
21, a memory unit 22, and a system bus 23 that couples the
system memory unit 22 to the processing unit 21. The
memory unit 22 includes Read Only Memory (“ROM”) 24
and Random Access Memory (“RAM”) 25. A basic input/
output system 26 (“BIOS”), containing the basic routines
that help to transfer information between the elements
within the client 11 such as during start-up, is stored in the
ROM 24. The client 11 further includes a hard disk drive 27,
a magnetic disk drive 28, e.g., to read from or write to a
removable disk 29, and an optical disk drive 30, example
given, for reading a CD-Rom disk 31 or to read from or write
to other media. The hard disk drive 27, magnetic disk drive
28, and optical disk drive 30 are connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical disk drive interface 34 respec­
tively. The drives and their associated computer readable
media provide non-volatile storage for the client 11.
Although the description of computer readable media above
refers to a hard disk, a removable magnetic disk, or a
CD-Rom disk, it should be appreciated by those skilled in
the art that other types of media which are readable by
computer such as magnetic cassettes, flash memory cards,
digital video disks, Bernoulli cartridges, and the like, may
also be used in the exemplary operating environment.

A number of program modules may be stored in the drives
27, 28, 29, and 30, and the RAM 25 including an operating
system 35, one or more application programs, such as an
email program module 36, other program modules, such as
a message manager program module 37, a local message
store 38, and a database 39 for supporting email applica­
tions. A user may enter commands and information into the
client 11 through a keyboard 40 and pointing device, such as
a mouse 42. Other input devices (not shown) may include a
pen, a touch operated device, a microphone, a joystick, a
game pad, a satellite dish, a scanner, or the like. These and
other input devices are often connected to the processing

4

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,047,425 B2

unit 21 through a port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such
as a serial port, a game port, or a Universal Serial Bus
(“USB”). A monitor 47 or other type of display device is
connected to the system 23 via an interface, such as a video
adapter 48. In addition to the monitor, personal computers
typically include other peripheral output devices (not
shown), such as speakers or printers.

The client 11 operates typically in a networked environ­
ment using logical connections to one or more remote
computers, such as a remote computer 49. The remote
computer 49, need not share the same operating system. The
remote computer 49 may be an email server (which includes
one or more message stores), as described above in connec­
tion with FIG. 1, a file server (which includes one or more
file stores), a router, a peer device, or other common network
node, and typically includes many or all of the elements
described relative to the client 11. The logical connection
depicted in FIG. 2 includes communication to either a Local
Area Network (“LAN”), or a Wide Area Network (“WAN”)
5. Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets, and
the Internet. When used in the LAN network environment,
the client 11 is connected to the LAN 9 through a network
interface 53 or additionally through the WAN 5. When used
in a WAN networking environment, the client 11 typically
includes a modem or other means for establishing commu­
nication over the WAN 5, such as the Internet. The modem
54 which may be internal or external is connected to the
system bus 23 via a serial port or interface 46 or other
suitable porting means. In a networked environment, pro­
gram modules depicted relative to the client 11, or portions
thereof, may be stored in the remote memory storage device.
It will be appreciated that the network connections shown
are exemplary and other means of establishing a communi­
cations link between the computers may be used.

A socket is a software interface that allows a software
program to link to another program in a physical IP network
over either a LAN 9 or a WAN 5. Each Transmission Control
Protocol/Internet Protocol (TCP/IP) enabled computer has
65,536 sockets available for Transmission Control Protocol
(TCP) communication with other hosts. The sockets are
really just logical ports, created by software, and all run over
the same physical TCP/IP link. By convention, certain
socket numbers are assigned to services available on every
TCP/IP host. Services such as FTP and TELNET which run
over socket 23 are examples of such conventional socket
assignments. In general, sockets numbered 1 through 1023
are reserved for TCP/IP host services.

Outside of TCP/IP environment, there exist other conven­
tional means for communicating across environments such
as the Local Area Network 9 or the Wide Area Network 5.
Common Object Request Broker Architecture (“CORBA”)
use software wrappers to tie Commercial Off-The-Shelf
(“COTS”) applications to a common Object Request Broker
(“ORB”) software interface. One example is Washington
University’s CORBA-based ACE/TAO software platform
known as Boldstroke. Objects on either the client 11a, 11 b,
or 11c or the server 7 are wrapped in a software interface that
allows the COTS program to link to another program within
the wide area network 5 or the local area network 9. While
sockets and wrappers are not the same thing, they serve
analogous functions in different environments.

Those skilled in the art will readily appreciate that while
the remainder of the discussion is directed at sockets and
placing filters in operation within a socket interface that
identically the same rationale would apply to the operating

5
system and software wrappers in a CORBA-based system.
The inventive method may be incorporated at any level of
the architecture. Operating systems can include the facility
to read and write to and from expected sources judging the
veracity of the data based upon an anticipated location for
the data. Even within a single machine, the locations of data
on memory units: RAM 25, Flard Drive 27, Magnetic Disk
29, or Optical Disks 31.

Referring now to FIGS. 1-3, the server side initialization
101 is a socket embodiment. FIG. 3 represents a generalized
flowchart of the inventive process residing on a server 7 in
a network system such as that represented in FIG. 1. The
network 5 is presumed to be “open” that is to say that not all
links in the network are known to be secure from external
access. When the server receives data 105 from the open
network 5, the data arrives at an input/output interface 107
and is examined. It is the task of the invention to quickly
ascertain whether data is “reliable.”

In the distributed network 5, data transfers may be either
“secure mode” to protect an entire process or “port secure”
to protect only certain communications. Thus, a client 11
might either be looking to establish a communications link
with the server 7 that is transient or persistent. The client 11
negotiates a connection with the server 7 for either a secure
system or a secure port.

At decision blocks 109 and 111, the server 7 polls the data
105 and, after examining any header that may be included in
the data, makes a decision at the decision block 109 that the
client is not seeking a secure system, and then examines at
the decision block 111 whether the client is seeking to
establish a secure port. If the client seeks neither a secure
system nor a secure port is necessary, the server 7 establishes
a connection at a block 117 with only non-secure functions
of the system such a non-secure function without limitation,
the corporate splash page for a public Internet presence. If
at either of the blocks 109 or 111 the client 11 has requested
secure operation, such as, without limitation, by a header to
the data 105, secure operation, the inventive process com­
mences at decision block 113.

One means of verifying the identity of data that the
inventive method seeks to exploit is examining the source of
the data. This is because reliable data comes from expected
sources. An analogy to wartime voice communication is
used as an illustration to explain this concept. In times of
military alertness, military units will switch to frequencies
for radio communications that have been agreed to in
advance as corresponding to the alertness state. Thus, a pilot
of an aircraft reporting an engagement with an enemy on a
non-secure frequency would cause the chain-of-command in
flight operations to question the validity of the report
because it is not on the appropriate frequency. Indeed, the
pilot might not be able to raise the chain-of-command on the
non-secure frequency simply because this convention has
the chain of command listening on alternate frequencies. In
an analogous fashion, the server 7 will not accept data
purporting to be secure data that comes to it from an IP
address on the computer network that is not deemed reliable
and appropriate for this user and application.

At a block 113, in one embodiment, the data 105 pre­
sented by the I/O interface 107 is examined and scrutinized
to see if the data 105 comes from a send site designated by
an EP address existing on a look-up table. As in the military
analogy, the IP address are treated much as the frequencies
for transmission. Just like secure military frequencies might
vary from day-to-day or from minute-to-minute, the inven­
tion does not require that the IP filter table remain static.
Rather, by any suitable algorithm or transmission means IP

6

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,047,425 B2

filter tables may vary as appropriate. Nonetheless, if the send
site from which the data 105 originates is not appropriate for
the type of application and user designated, the data is
rejected at the block 113.

An additional virtue of the present invention is that if, at
the block 113, the send site for the data 105 is not appro­
priate, the system moves to a block 115 to block the
connection. If desired, a log may be made of the data 105
and the source IP address, logging the same as an attack on
the system. An administrator of the network 5 would thereby
use the “attack log” generated to track attacks on the system.
Constellations of attacks from a single IP address might
indicate either a failure in the system to synchronize IP filter
tables containing the “trusted” send site information or the
identity of the attacker seeking to “hack” into the system.

In the event that data is sent from an appropriate source,
a secure connection is established at the block 117 suitably
allowing either allowing secure system or secure port com­
munication depending upon the request in the data header.
The connection is established based upon data stemming
from an expected source.

While FIG. 3 portrays the generalized method as a server
side socket filtering embodiment, FIG. 4 portrays a server-
side object filtering embodiment. The distinction between
the two embodiments is the point where the method is
interposed. For the server side socket filtering shown in FIG.
3, the model suggests that the boundaries of security are
co-terminus with the server, that is to say that the server
itself is secure and that the socket is the frontier-checkpoint
where the pass/no pass decision is made for data entering the
server. FIG. 4, on the other hand, presents server-side object
filtering. Secure and non-secure data resides within any
server. Each object has a frontier of security drawn around
it in the server side object filtering (FIG. 4) such that the
frontier checkpoint for security is access to the object itself
rather than to the whole of the server.

Referring now to FIGS. 1, 2, and 4, a client object 120
resides on a client computer 11. The client object 120 might
be a COTS application wrapped in its appropriate software
wrapper or it may be a proprietary object written with
definitions consistent with a CORBA architecture. In either
case, the object has the ability to read from or write data to
the system. In most systems, the client object 120 will have
the ability to encrypt data, though encryption is a distinct
form of security and is not required by the invention. If
encryption is used, the sort of encryption, e.g., 128-bit public
key encryption, will not affect the inventive system. Flow-
ever, because the use of encryption provides an elegant
overlay to the inventive method, the description of this
embodiment includes encryption and decryption at suitable
points.

In this example, the client object 120 seeks to transfer data
to the server object 140 over the network 5. The process is
symmetric. There is no need for the process to originate on
the client side; rather, the roles can be exchanged. None­
theless, FIG. 4 depicts a data transmission from the client 11
to the server 7.

To write data to the server 7, the client object 120 selects
data for transfer. Flaving appropriately defined data that
itself comprises either a data set or an object, the client
object 120 then selects a system receive site address on the
server based upon a first IP address/object filter table and the
desired security level. The IP address/object filter table is
suitably a “look-up” table that indicates addresses appropri­
ate for reliable transfer of data. The IP address/object filter
table may change periodically to enhance security. For any
given moment of application, the table is static, because, at

7
any given transmission time, the definition of a trusted send
site and a trusted receive site must correlate to allow
successful transmission. One presently preferred embodi­
ment of the invention suitably generates filter tables as a
result of an algorithm based on date stamp information. In
any regard, the first IP address/object filter table represents
secure receive sites based upon a given user and application.

At a block 123, the client object, now, defines a data
payload including the data in question and a descriptive
header. The descriptive header, in turn, includes a destina­
tion object ID and client object ID. At a block 125, the
destination object ID adds the secure receive site address
along with receive object parameters defining the size and
attributes of the data in the data payload. Where encryption
is used, the data payload is encrypted according to a suitable
known technology, at block 127. The encrypted data is now
suitable for transfer across the network 5. In some instances,
the encrypted data will pass through a filter 130 such as a
socket filter. Upon receipt of data, the server side object 140
will decrypt the header at block 141. The decryption at block
141 only decrypts the header of the data payload in order to
establish the system receive site address, a send object name,
a receive object name, and the receive object parameters. At
a block 143, the system compares the decrypted data pay-
load used for the data. In doing so, the inventive method
checks to determine that the data has not been corrupted in
transmission and each bit of data sent corresponds with each
bit of data received. At a block 143, if the values describing
the received data payload do not correspond with those
encrypted in the header, the data is immediately rejected as
corrupt, and at a block 145, the data is ignored.

After this integrity check, at a block 147 the method
checks a second IP address/object look-up table, compares
the safe send address data for the time of sending and
according to the users and applications sending the data to
see if the data payload was sent from a suitably secure site.
If not, the data is treated as corrupt or dangerous and again,
at the block 145, the data is ignored. If it passes both tests,
the data payload is entirely decrypted at a block 149 and
suitably saved in association with the server side object 140.

One skilled in the art will readily appreciate that the first
IP address/object look-up table need not precisely match the
second IP address/object look up table. So long as there is a
correspondence between the tables such that the sending
computer always knows, from the first IP address/object
look up table, where the secure receive sites are and the
receiving computer knows, from the second IP address/
object look up table, where the secure send sites are, the IP
address/object filter will work. This enhances security
because computers at send sites are not aware of other send
sites’ secure IP addresses. Thus, no sending computer can
masquerade as a distinct sending computer. Each appropri­
ate table can be constructed in manner to prevent possible
cross-referencing to anticipate the values of sites around the
network for other clients 11 in the network 5.

Referring, now, to FIG. 5, the role of the several distinct
IP address/object filters across the network, one IP object
filter is set 160 is implicated in communications between
client 11a and Client 11 b. Distinct tables are employed in
communications between client 11c and lid , as opposed to
using one table for all communications such as from client
l i d to server 7 or server 7 to client 11c.

While the preferred embodiment of the invention has been
illustrated and described, as noted above, many changes can
be made without departing from the spirit and scope of the
invention. For example, as discussed above, rather than
employing the inventive method in either sockets or soft­

8

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,047,425 B2

ware wrappers, the inventive method might in fact be
embedded in an operating system. Similarly, the inventive
method could be employed in drivers that drive memory
devices on the network. Accordingly, the scope of the
invention is not limited by the disclosure of the preferred
embodiment. Instead, the invention should be determined
entirely by reference to the claims that follow.

What is claimed is:
1. A method for securely transferring data between appli­

cations over a network comprising:
selecting a receive site address on a server from a site

receive list;
defining a data payload for transmittal including data for

transfer;
encrypting the data payload; and
transmitting the encrypted data payload from a send site

address selected from a send site list over a network to
the receive site address; and

receiving the data payload at the receive site address
based upon its transmission from the send site.

2. The method of claim 1, wherein each of the send site
list and the receive site lists are based upon a first IP
address/object filter table and a desired security level that is
selected from the first IP address/object filter table.

3. The method of claim 2, further comprising:
receiving the transmitted encrypted data payload over the

network at the receive site address;
decrypting the data payload; and
accepting the data based upon a second IP address/object

filter table and the send site address.
4. The method of claim 1, wherein the data payload

includes a data payload header comprising:
the system receive site address;
a send object name;
a receive object name; and
receive object parameters.
5. The method of claim 4, wherein the receiving includes

separately decrypting the data payload header.
6. The method of claim 5, wherein decrypting the data

payload header includes accepting the data payload for
decryption based upon anticipated values contained in the
data payload header.

7. The method of claim 1, wherein either the first or
second IP address/object filter tables are changed periodi­
cally.

8. The method of claim 1, wherein data is selected for
secure transfer according to the predetermined security
level.

9. A software product in an object-oriented networked
system for secure transfer of data, the software product
comprising:

a first executable wrapper to wrap a first software appli­
cation including:
a first program code for accepting data at a send site

from the first software application;
a second program code for selecting a receive site on a

network from a first filter table based upon a prede­
termined level security selected from the first filter
table;

a third program code for encrypting the accepted data
from the first software application; and

a fourth program code for transmitting data from the
send site to the selected receive sight; and

a second executable wrapper to wrap a second software
application, the second executable wrapper including:
a fifth program code for accepting transmitted data

from the network at a selected receive site;

9
a sixth program code for decrypting accepted data from

the network;
a seventh program code for accepting the decrypted

data based upon the send site and a second filter
table; and

an eighth program code for providing decrypted data to
the second software application.

10. The software product of claim 9, wherein the second
program code assembles the accepted data into a data
payload including a data payload header.

11. The software product of claim 10, wherein the data
payload header includes:

the receive site address;
a send object name;
a receive object name; and
receive object parameters.
12. The software product of claim 11, wherein the seventh

program code includes the data payload header.
13. The software product of claim 12, wherein the sixth

program code decrypts the data payload header by accepting
data based upon anticipated values contained within the data
payload header.

14. The software product of claim 9, wherein the first and
second filter tables are changed periodically.

15. The software product of claim 9, wherein data is
selected for secure transfer according to the desired security
level.

16. A system for transmitting data objects across a net­
work of computers comprising:

a network of computers, including at least one server and
at least one of client computers;

a send addressable memory site within the network;
a receive addressable memory site within the network;
a first set of executable data located at a first addressable

memory site within the network including:
a first program code for selecting the receive memory

site from a first filter table based upon a desired level
of security selected from the first filter table;

a second program code for encrypting a data payload
including data for transmittal; and

a third program code for transmitting the data payload
from the send memory site to the receive memory
site;

a second set of executable data located at the receive
memory site, the second set of executable data includ­
ing:
a fourth program code for accepting the transmitted

data payload;
a fifth program code for decrypting the accepted data

payload; and
a sixth program code for accepting the decrypted data

payload based upon the send memory site and a
second filter table.

17. The system of claim 16, wherein the data payload
further includes a data payload header.

18. The system of claim 16, wherein the data payload
header includes:

the receive site address;
a send object name;
a receive object name; and
receive object parameters.
19. The system of claim 16, wherein the fifth program

code further decrypts the data payload header.
20. The system of claim 16, wherein decrypting the data

payload header includes accepting data based upon the
anticipated value of the data payload header.

10

5

10

15

20

25

30

35

40

45

50

55

60

65

US 7,047,425 B2
11 12

21. The system of claim 16, wherein the first and second 23. The system of claim 16, wherein the client is a
filter tables are changed periodically. personal digital assistant.

22. The system of claim 16, wherein the client is an
unmanned combat air vehicle. * * * * *

