[54] AUTOMATICALLY LANDING AN AIRCRAFT
[75] Inventors: Willi Hornfeld, Weyhe; Helmut Grobecker, Stuhr, both of Fed. Rep. of Germany
[73] Assignee:
Vereinigte Flugtechnische Werke GmbH, Bremen, Fed. Rep. of Germany
[21] Appl. No.: 202,586
[22] Filed:
Oct. 31, 1980
[30] Foreign Application Priority Data
Nov. 2, 1979 [DE] Fed. Rep. of Germany \qquad 2944337
[51] Int. Cl. ${ }^{3}$ \qquad G06F 15/50
U.S. Cl

364/429; 244/183;
340/26; 343/5 LS
Field of Search \qquad 364/428, 429; 340/26; 343/5 LS, 5 GC, 107, 108 R; 244/183, 184, 185
[56]

References Cited

U.S. PATENT DOCUMENTS

| $3,671,963$ | $6 / 1972$ | Assouline et al. 343/5 LS X |
| :--- | ---: | :--- | :--- |
| $3,697,022$ | $10 / 1972$ | Autechaud et al. 364/429 X |
| $3,716,855$ | $2 / 1973$ | Asam $343 / 5$ LS |
| $4,196,346$ | $4 / 1980$ | McElhannon $340 / 26$ X |

FOREIGN PATENT DOCUMENTS

1552249 9/1979 United Kingdom .

Primary Examiner-Jerry Smith Attorney, Agent, or Firm-Ralf H. Siegemund

[57]

ABSTRACT
The aircraft is provided with an infrared sensor which is adjustable by means of feedback control so that its line of sight (image center) is and remains in line with the middle one of three infrared fires at and near the end of the runway. The craft is now maneuvered in such a way that its longitudinal axis is aligned with the horizontal component of the line of sight. After a particular distance has been reached, the aircraft descends while the image of the middle fire remains centered. The system uses existing equipment and is further supplemented to correct an initial gross deviation from the desired approach path.

7 Claims, 3 Drawing Figures

AUTOMATICALLY LANDING AN AIRCRAFT

BACKGROUND OF THE INVENTION

The present invention relates to automatically landing an aircraft, possibly even an unmanned aircraft, which is equipped with appropriate navigational controls.
Automated instrument landing is known generally and has been developed into practical use. The requisite instrumentation is quite extensive and expensive and must bear a reasonable relation to the benefit gained therewith. Of course, commercial aircraft, military transport planes, and similar type crafts, will always justify the expense. The situation is different, however, for small, unmanned aircraft, such as small reconnaissance planes, also known as remotely piloted vehicles, or RPV, for short. Instrument landing in the conventional sense cannot be realized here in a cost-effective manner, so that these planes are usually brought down by means of parachutes, nets, or the like.

DESCRIPTION OF THE INVENTION

It is an object of the present invention to provide for automated landing of an unmanned, remotely piloted aircraft.

German printed Patent Application 2519241 (see also British Pat. No. 552,249) discloses reconnaissance equipment for acquiring image information by an aircraft, covering territory crossed by the plane. This equipment includes an infrared TV-type camera and a programmable image selector for purposes of emphasizing certain points of interest (targets) and for deemphasizing background information. Its purpose is to limit the transmission of information to ground, to that portion that is absolutely necessary.
It is an object and feature of the present invention to make use of such an infrared image acquisition device on an unmanned aircraft during automated landing thereof.
In accordance with the preferred embodiment of the present invention, it is suggested to arrange a plurality of, e.g., three infrared lights or fires in a line which extends transversely to the runway, at one end thereof, whereby a middle one of the fires is on the center line of the runway. The aircraft is provided with a positionadjustable infrared sensor and image-generating device which is controlled as to its position and orientation so that, e.g., its center will be directed toward the middle fire. Angular deviations in the horizontal plane of the camera axis (line of sight) from the aircraft's longitudinal axis and direction of flight are measured and used to maneuver the aircraft toward that middle fire. The inventive method and system is, thus, comprised of a double-feedback loop. The first loop involves just the infrared sensor and the fires on ground, the loop operates to center the camera on one, e.g., the middle fire, and to continue to track the image thereof. The second loop involves the aircraft as a whole and the infrared sensor by way of follow-up, whereby the aircraft is caused to align with the optical axis of the camera as positioned by the first loop. Of course, any wind from the side, causing to shift the plane laterally, is taken into consideration. The alignment of the sensor axis is, thus, with the direction of flight, i.e., with the longitudinal axis of the aircraft plus a correction for wind.
Prior to this on-line operation, the camera should be oriented into a search position, such as forward and

The block diagram shown in FIG. 2 depicts as a central element an infrared system 10, for example, of the type shown in the above-mentioned patent applica-
tion No. P 2519 241. This system includes an infrared image sensor 11 which is equivalent to an infrared TVtype camera. The line scan image signals from sensor 11 are fed to an image selection stage 12 . The purpose of that stage as far as its normal use is concerned is not important at this point. As far as the present invention is concerned, it is a stage which, for example, processes the TV image signals to suppress information that is below a particular level, the latter being, for example, a particular db level below the average image level. This way, one will be able to clearly and unequivocally identify the fires whenever they appear in the image field. The response and discriminating level for suppressing and emphasizing certain image information may vary for different modes of operation of device $\mathbf{1 0}$. For the present purpose, this processing stage 12 will be primarily responsible to recognize the image of the fires on the landing strip, in contradistinction to other infrared reflectors from ground. This discriminating level may originally be based on the light intensity that can be expected when the fires first come into view. Later, the level may be raised to clearly single out the images of the three fires.

An evaluating unit 13 is connected to the select stage 12. Bearing in mind that the TV camera scan follows a well-defined scanning pattern, the location of each image point in the viewing field can be identified by an $\mathrm{X}-\mathrm{Y}$ coordinate system, whose values are directly derivable from the scanning signals themselves which operate the sensor. The evaluating unit 13, thus, includes a stage, possibly a digital stage, which identifies and stores the coordinate values of the scan of the three fires when seen.

The unit 10 includes additionally a distance-measuring device, e.g., a laser unit. This laser unit may be independently oriented to point in forward and down direction. Conceivably, it may be operationally or physically coupled to the infrared sensor 11 to measure, e.g., the distance of the center of the sensor's image field from ground. This mode of operation may be restricted, however, to the landing mode and operation as described. At other times, the distance-measuring unit may be independently operating or only on specific command. Unit 10, finally, is suitably mounted and driven with respect to its orientation by suitable motors of unit 10, permitting the sensor to point in various directions. This control for the positioning of sensor 11 may include a suitable processor to generate the requisite position signals, either on the basis of external commands or by operation and response to specific coordinate values such as furnished by stage 13 in order to determine, for example, the deviation of the camera and image field center from a particular image in the image field. The position signals are used by a tracking unit 15 which generates the control signals for driving the positioning motors, etc., for sensor 11.

The system includes an inertia navigational measuring and sensing system 14 for the aircraft which includes the appropriate and conventional sensors and is, thus, capable of furnishing signals representing the forward speed V, the altitude H, and the angle of the aircraft in the horizontal plane, particularly during final approach. This angle is particularly the one between the longitudinal axis of the aircraft and its actual direction of flight. These signals are to be used by unit 10, to be described below.

The tracking unit 15 is provided to develop the requisite position control signals for initially position the dater (distance S integral). The same data may be fed to an armament controller 19; but that is not important for the present invention and is relevant only when the system is not in the landing mode.

The navigational computer 17 cooperates with the TERCOM unit 18 which, during normal flight, controls its progress. These units are of the type which correlates statistically image data of the terrain underneath with terrain reference data and, thereby, controls the flight. This unit 18, therefore, is primarily responsible for maneuvering the aircraft back toward its home base airstrip. Unit 18 will be responsible primarily for determining when the aircraft is actually on approach so that the automatic landing operation can begin. This will not be an automatic switchover at an instant given by a particular location of the aircraft, but will depend upon when the infrared unit has found the infrared fires and the sensor 11 has completed its orientation toward them. The unit 18 may, however, determine when the search for the fires is supposed to begin. It will do so by causing the priority logic 16 to control units $10 \& 15$ to go into the search mode. Following the detection and position acquisition of the fire images, sensor 11 is oriented toward the middle fire; and after this feedback and stabilizing operation has been completed, control of the flight will be turned over to unit 10 , to slave the horizontal course of the aircraft to the horizontal component of the line of sight.

The system operates as follows (see FIG. 3). It is presumed that the vehicle $\mathbf{1}$ is on its return flight, under automatic control of TERCOM unit 18 or otherwise, but it is not presumed that the automated flight does, in fact, guide the vehicle 1 exactly toward and in line with the runway, but only generally toward the airfield. As soon as the aircraft has, approximately, a particular distance from the airfield (such as a few or several miles e.g. 4 km), units 15 and 16 receive a command from the on-board navigational unit 18 to change the mode of unit 10 to the landing mode and to place the sensor 11 into the search mode. In response thereto, unit 15 may at first issue control signals in order to reorient the infrared image sensor 11. This initial command will cause sensor 11 to point in forward direction, but at a particular angle in down direction. The command unit 15, moreover, terminates any previous target-seeking mode by unit 10, but, temporarily, sensor 11 assumes a fixed orientation. The down angle of sensor 11 may be such that, at the given altitude H , the aircraft has presently the distance S of the aircraft (sensor 11), to the point of intersection of the line of sight with ground has a value of, e.g., 3000 m . The aircraft, however, is still relatively far from the runway so that the middle fire 4 will not be right in the center of the field of view of sensor 11. Any of the fires may appear in the field of view somewhere near the margin.
At the particular distance from the airfield, e.g., 4 km , areal navigation system 18 causes also the logic 16 to change the mode unit to automated landing. This involves particularly a search by the stages $\mathbf{1 2}$ and 13 for the three fires; circuit 16, in other words, enables all those portions in unit 10 which permit later on the sensor 11 to position-stabilize so that its center line of sight will intercept the middle fire.

In particular, the image-select criteria may be changed in unit 12 to render the unit specifically responsive to the level of radiation from the fires 3,4 , and 5 . As stated earlier, unit 12 operates with particular response levels in order to emphasize and deemphasize respectively higher and lower radiation values as received. The unit 16 will, at this time, cause unit 12 to select a discriminating level so that, at a particular distance nsor 11 is caused to remain centered on the image of fire 4, identifying the point toward which the plane is to head. The aircraft will be on approach when the sensor is oriented to point down and forward, and the position
of the image of fire 4 does not change laterally. Also, the distance of the images of the outer fires $\mathbf{3}$ and 5 from the central one must be equal. It can thus be seen that, following a command to the aircraft's system, it will be prepared for landing, the sensor 11 is fixed into a particular search position. Having found three distinctive image points and having determined that they are on a straight line, a first, internal control loop in unit 10 causes the line of sight of sensor 11 to stabilize on the middle fire. Except in special cases to be discussed shortly, sensor 11 will remain stabilized in that fashion by this first control loop. Once this loop has stabilized, it slaves the aircraft to the line of sight of the sensor by a second loop in that the deviation of the horizontal component of that line of sight is reduced to zero by maneuvering the aircraft accordingly, this being a second loop.

Once the aircraft is in this operational state condition and has a particular distance from fire 4, a programmed descent is commanded (e.g., externally or internally on the basis of the established zero deviation state as described) and is carried out under utilization of the altitude data furnished by inertia system 14. The aircraft has at that point a particular height above ground and distance from the airfield. The descent will be controlled by means of the calculating facility in unit 17, particularly using the angle in the vertical plane along which the sensor 11 points in down direction, toward the middle fire 4. Thus, the control now operates by ensuring, through the descent of the aircraft, that the downwardly directed angle of the sensor 11 remains constant. The sensor 11, of course, maintains autonomously a centering position on the fire 4 and that may require a change in the up and down angle of orientation of the sensor. The aircraft's descent is controlled (via computer 17) so that that angle does not change.

The operation as described above assumes that the aircraft as it approached the airfield initially is approximately on course and that the corrective maneuvers, derived from infrared sensor misalignment as described, are minor in nature. The situation is different when the aircraft approaches the airfield at a rather oblique angle, e.g. 45°, or thereabouts. The acquisition and measuring system as described and as operating on the basis of the image data of the infrared landing lights and fires, still operates in the same manner; but in this case, more corrective maneuvers of the aircraft may not suffice, considering the rapidity of the approach. Therefore, the aircraft will undertake to make two particular turns in order to bring it more in line with the airstrip.

In the initial acquisition phase, with sensor 11 pointing straight forward and down, a line of three fires will appear somewhere in the margin portion of the image field of view. If this line, whose coordinate values are determined by unit 13, has an angle to the horizontal in excess of a particular value corresponding to an oblique approach of the aircraft, the unit will not at first, or will not continue to, stabilize toward the middle fire, but toward an outer one in order to cause the aircraft to make a turn. This first turn is carried out in that the aircraft is oriented to fly toward the outer fire which is farther from the central one than the third one is; this is the fire whose image is higher in relation to a horizontal line on the sensor image. The determination as to which one of the images is to be chosen as a temporary flight target is made by unit 10 itself. The distance meter or on-board calculations as to the relation of the image points to each other can be used to select this criterion.

This first turn reduces the asymmetry as between the images of the fire. As soon as that asymmetry drops below a limit (the limit being variable and depending upon the speed), a control command changes the flight condition, unit 17 will temporarily disregard the misalignment data from unit 10 and, instead, commands another turn. That turn is to follow a circle characterized by the fact that the extension of the center line $2 a$ of the runway is a tangent line on that circle. This turn brings the aircraft in line with that tangent which is, indeed, the correct approach direction. Once on the tangent line, the fine position control through the sensor 11 and its orientation takes over again. Soon thereafter, the descent begins as described.

Another situation may occur in which the aircraft actually approaches the airfield at a right angle, or an angle close to a right angle. This case or situation is characterized by the fact that three fire images are vertically or near vertically aligned (within a particular, angular range about the vertical). Having found this deviation, the aircraft is first commanded to make a 90°, or near 90°, turn before the sensor control takes over. Another corrective turn may also be in order. The final approach is then carried out as described, including particularly the descent.

During the descent, generally, it may be advisable to use the continuously available distances between the images of the fire as an additional (or exclusive) criterion from which to calculate on a running basis the distance of the aircraft from ground. The final phase of descent is determined and initiated when the distance between the fires exceeds a particular value; they must be on a straight, horizontal line and equidistantly spaced. This then causes the aircraft to undergo the final landing maneuver.

The invention is not limited to the embodiments described above; but all changes and modifications thereof, not constituting departures from the spirit and scope of the invention, are intended to be included.

We claim:

1. Method of automatically landing an aircraft, comprising the steps of
providing a plurality of infrared fires at a particular distance from each other, one fire being centrally located at the end of a runway;
detecting, on board of the aircraft, images of the fires, under utilization of an infrared sensor;
reorienting the detecting sensor by means of automatic tracking so that an image of the centrally located fires has a central disposition with respect to and in an image frame;
automatically determining angular deviation of the reoriented sensor from the direction of flight of the aircraft in a horizontal plane; and
automatically maneuvering the aircraft on the basis of said determining step so that the aircraft approaches the said centrally located fire while maintaining the sensor oriented as having resulted from the reorienting step.
2. Method as in claim 1, the detecting step including, orienting the infrared sensor at a particular angle and in a particular direction; and searching for absence or presence of said images in its field of view.
3. Method as in claim 1 or 2 , including the step of selecting a particular intensity level and/or a particular distance value in the images of the fires as a criterion for identifying them as images of said fires.
4. Method as in claim 1 and including the step of initiating descent after said aircraft has been maneuvered toward said centrally located fire.
5. Method as in claim 1, wherein said fires are turned on when the aircraft has a particular distance from them.
6. Apparatus for automatically landing an unmanned aircraft, comprising:
an infrared image sensor, adjustably disposed in said aircraft;
first loop means including the sensor for orienting the sensor and stabilizing its orientation to point toward a particular ground target point;
second loop means being slaved to said first loop means for maneuvering the aircraft toward said target point; and
means for causing said aircraft to descend toward said target point.
