
US 20050132104A1
(19) United States
(12) Patent Application Publication (io) Pub. No.: US 2005/0132104 A l

Brown (43) Pub. Date: Jun. 16,2005
(54) COMM AND PROCESSING SYSTEMS AND

METHODS
(76) Inventor: David W. Brown, Bingen, WA (US)

Correspondence Address:
SCHACHT LAW OFFICE, INC.
SUITE 202
2801 M ERIDIAN STREET
BELLINGHAM, WA 98225-2412 (US)

(21) Appl. No.: 10/991,905
(22) Filed: Nov. 17, 2004

Related U.S. Application Data
(60) Provisional application No. 60/520,918, filed on Nov.

17, 2003.

Publication Classification
(51) Int. Cl.7 ... G06F 3/00
(52) U.S. Cl...710/36
(57) ABSTRACT
A command processing system for transferring commands
from at least one command source to at least one command
target of at least one command target type. The command
processing system comprises at least one service client
associated with each command source; a command proces­
sor in communication with the at least one service client; and
a command thread associated with each command target
type. The command thread is in communication with the
command processor. The command thread is in communi­
cation with the at least one command target. The command
thread transfers commands from the command processor to
the command target.

US 20050132104A1

Patent Application Publication Jun. 16,2005 Sheet 1 of 9 US 2005/0132104 A1

CH Service [Q—
|̂ThioClient |

Cm d T a rg e t« o C m d T a rge t 8 o - C m d T arget C
(type #2 cm d) (type #1 cm d)

^ E = 2 ^ = = 3 = = d

(type #1 cmd)

Patent Application Publication Jun. 16, 2005 Sheet 2 of 9 US 2005/0132104 A1

F t c , . 4

Patent Application Publication Jun. 16,2005 Sheet 3 of 9 US 2005/0132104 A1

Comand

Patent Application Publication Jun. 16,2005 Sheet 4 of 9 US 2005/0132104 A1

2 % H _ Q-
E ven t C m p n t a , C m C m d Ta rge t

. \ |

p \ a . 2

Patent Application Publication Jun. 16,2005 Sheet 5 of 9 US 2005/0132104 A1

I b 6 c .

F 1 6 . ^

8 ■" C om m and Service 1
Conflauration and Status 1

i (/ 0 2 W SHSiJI
X ' t

f

/Wi o

66 6

Patent Application Publication Jun. 16,2005 Sheet 6 of 9 US 2005/0132104 A1

Patent Application Publication Jun. 16,2005 Sheet 7 of 9 US 2005/0132104 A1

(> C om m and
Targ et

,

F l < s .) i -

Patent Application Publication Jun. 16,2005 Sheet 8 of 9 US 2005/0132104 A1

\ < i O

f —
r Se rv ice

m
P i c , , 0

A 6 6

Patent Application Publication Jun. 16,2005 Sheet 9 of 9 US 2005/0132104 A1

f \ o - i *

FlC . IF

US 2005/0132104 A1
1

Jun. 16, 2005

COMMAND PROCESSING SYSTEMS AND
METHODS

RELATED APPLICATIONS
[0001] The present application claims priority of U.S.
Provisional Patent Application Ser. No. 60/520,918 filed on
Nov. 17, 2003.

FIELD OF INVENTION
[0002] The present invention relates to systems and meth­
ods of distributing software commands and, more specifi­
cally, such software systems and methods for distributing
commands from one or more command sources to one or
more command targets.

BACKGROUND OF INVENTION
[0003] The present invention is of particular significance
in the field of motion control systems and methods, and that
application of the present invention will be described in
detail herein. However, the present invention may have
broader application to other systems and methods in which
commands from one or more command sources must be
distributed to one or more command targets.
[0004] In the context of motion control systems, control
commands are transmitted to motion control devices such as
computer numeric control (CNC) systems, general motion
control (GMC) automation systems, and hardware indepen­
dent data engines for motion control systems. The destina­
tion motion control device will be referred to herein as a
command target. In some situations, these control com­
mands come from a variety of sources, which will be
referred to herein as command sources.
[0005] The need exists for systems and methods for orga­
nizing the distribution of control commands form a variety
of types of command sources to a variety of types of
command targets.

SUMMARY OF INVENTION
[0006] The present invention may be embodied as a com­
mand processing system for transferring commands from at
least one command source to at least one command target of
at least one command target type. The command processing
system comprises at least one service client associated with
each command source; a command processor in communi­
cation with the at least one service client; and a command
thread associated with each command target type. The
command thread is in communication with the command
processor. The command thread is in communication with
the at least one command target. The command thread
transfers commands from the command processor to the
command target.

DETAILED DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 is a module interaction map depicting the
interaction of modules of a command processor system of a
first embodiment of the present invention;
[0008] FIGS. 2-8 are use case maps illustrating common
uses cases that occur during operation of the example
command processing system of FIG. 1;

[0009] FIG. 9 is a module interaction map depicting the
interaction of modules of a command processor system of a
second embodiment of the present invention;
[0010] FIGS. 10-14 are use case maps illustrating com­
mon uses cases that occur during operation of the example
command processing system of FIG. 9; and
[0011] FIG. 15 depicts a component interface imple­
mented by all components of the example command pro­
cessing system of FIG. 9.

DETAILED DESCRIPTION OF THE
INVENTION

[0012] The present invention relates to systems and meth­
ods for processing various types of commands transmitted
between one or more command sources and one or more
command targets forming part of a larger command system.
The present invention is of particular significance when the
command system is part of a motion control system, and that
application will be referred to on occasion below. As used
herein, the term “command” refers to information that
allows an operation to be executed on a command target.
[0013] The present invention may be implemented using
any one or more of a number of different system designs. A
self contained system 20 of the present invention will be
described below with reference to FIGS. 1-8. The self
contained system 20 describes a command processor com­
ponent that implements all command processing function­
ality within a single component. A modular design will be
described with reference to FIGS. 9-14. The modular design
describes a a command processor system made up of the
command processor component and one or more command
execution components. The example self contained and
modular designs are described below with reference to a
module interaction description and a set of use cases that
describe how the modules interact with one another when
carrying out common operations.
[0014] In the present application, the term “module” is
used to refer to a binary block of computer logic that
contains functions, objects, components, ActiveX compo­
nents, .NET source, HTML, XML and/or other computer
code that can be executed in real-time or in script form.
Several examples of a module include an executable EXE,
a dynamic link library DLL, an OLE component or set of
components housed within a DLL or EXE, an ActiveX
Control, an HTML or XML based Control, a VB script
source file, a Java Serverlet, Java Control, Java Object, NET
Package, etc. The term “component” as used herein refers to
a logical organization of computer logic designed to perform
a set of operations. Several examples of a component are an
OLE Component, an ActiveX Control, an HTML or XML
based Control, an HTML or XML based object, a .NET
object, a Visual Basic based object, etc.
[0015] Referring now to FIG. 1 of the drawing, depicted
therein at 20 is a command processing system constructed in
accordance with the principles of a self contained system 20
of the present invention. The self contained system 20
comprises a command processor 22 implemented such that
all command processing takes place within a single com­
ponent. The self contained system 20 may allow for faster
command processing than command processing systems
using alternative designs.

US 2005/0132104 A1
2

Jun. 16, 2005

[0016] The command processor 22 is designed to run as an
individual COM+ Component either in a stand alone manner
under COM+. In the context of a motion system, the
command processor 22 may be designed to operate under a
Windows NT Service application for providing motion
services (e.g., XMC Service). When run under COM+, the
command processor 22 may receive commands in various
forms, including SOAP (simple object architecture proto­
col), Web Services, COM method calls, and by monitoring
a section of shared memory for command requests. Various
other command input methods may also employed.
[0017] The example command processing system 20 com­
prises the command processor component 22, one or more
command source components 30, and one or more command
target components 32. The example command sources 30
are each associated with a service client 34. The example
command processing system 20 further comprises a com­
mand service module 40 and a command service configu­
ration and status module (configuration and status module)
42. In some situations, the command processing system 20
may further comprise an event component 44.
[0018] The example command processor 22 receives,
runs, and responds to commands received through first and
second areas 50 and 52 of shared memory in the system 20.
The command processor may optionally run as a COM+
component that services SOAP or other Web Service
requests directly or via COM+. The command processor 22
may optionally communicate with the command target com­
ponents 32 across a network, depending on the overall
system architecture. As used herein, the term “network”
refers to a link between two or more computer systems and
may be in the form of a packet based network, a streaming
based network, broadcast based network, or peer-to-peer
based network. Several network examples include a TCP/IP
network, the Internet, an Intranet, a wireless network using
WiFi, a wireless network using radio waves and/or other
light based signals, etc.
[0019] If the sent commands relate to a command opera­
tion that must run as a set of commands or not at all, the
command processor 22 may employ command ‘framing’ to
ensure that the commands are run as a set. U.S. Pat. No.
6,480,896 to the present Applicant describes a system of
command framing in the context of a motion control system.
[0020] The example service clients 34 are thin service
components associated with specific clients or types of
clients that interface with the shared memory used to com­
municate command requests to the command processor 22.
Each service client 34 may also relay input to the command
processor 22 by receiving commands via some other proto­
col such as TCP/IP, SOAP Messaging, or the like that is
transferred either locally or across a network. Once received,
the command is then converted into the appropriate shared
memory format to direct the command processor 22 that a
new command is ready for processing. Optionally the ser­
vice client 34 may communicate either locally or across a
network using OLE/COM interface methods of the com­
mand processor 22. This method is typically not as fast, but
can allow for architectural flexibility.
[0021] In the context of a motion control system, the
command sources 30 may be formed by an application
programming interface for motion systems 30a (e.g., XMC
API), a system for processing data 30ft (e.g., XMC Data
Router), and/or other clients 30c.

[0022] The command targets 32 are sets of components
used to monitor devices or machines. Each of the command
targets 32 may be created for particular device or machine
or class of devices or machines. The terms “device” or
“machine” as used herein refer to a physical asset used to
perform a specified task. For example, a machine may be a
CNC Mill used to shape metal, a pick-n-place machine used
to position parts on a circuit board, a robotic machine used
to perform surgery, a medical data input device used to
collect the vitals from a human being (i.e. blood glucose
meter, asthma meter, etc), a gaming device used when
playing a game, a robotic toy, an animatronics figure, a
robotic machine used to deliver goods to a warehouse or to
people, an automobile, truck or farm vehicle, a boat or ship
that maneuvers in water, a airplane, jet, helicopter and/or
spacecraft. Basically any self powered machine or device
(mobile or not) that is either directly controlled by humans
or automatically controlled via a computer based system.
[0023] In the context of a motion control system, the
command targets may be formed by a system of transmitting
data to a motion system (data engine) 34a (e.g., XMCDE
Data Engine system), a system for automating control of a
CNC motion system (CNC control system) 34ft (e.g., XMC
CNC Automation system), and/or a system for automating
control of a CMC motion system (CMC control system) 34c
(e.g., XMC CMC Automation system).
[0024] The configuration and status module 42 allows the
user to configure the service and gain status on how the
application is running. The example command service mod­
ule 42 is a very thin Windows NT Service that optionally
hosts the command processor 22, thereby allowing the
command processor to run even while the current user is not
logged into the system.
[0025] The event component 44 sends event data received
from one of the data sources formed by the target compo­
nents 32 to one or more ‘listening’ client components 34
associated with the command sources 30. The term “data” as
used herein refers to any numeric or string data values
collected from a target machine or device in an analog or
digital format that is made compatible for computer systems.
Examples of data types that represent data items include
BIT, BYTE, WORD, DWORD, LONG, REAL, DOUBLE,
FLOAT, STRING, ASCII STRING. Data may be collected
from data sources using various methods such as reading
register values on the data source, reading shared memory
provided by the data source, sending commands to the data
source for which a data response is given containing the data
requested, reading variables provided by the data source,
reading and writing to variables in a sequence necessary to
produce data values, querying data using a proprietary or
standard data protocol, and/or calling a function provided by
the target data source.
[0026] As shown in FIG. 1, the example command pro­
cessor 22 comprises several C++ objects and Windows NT
threads that interact with one another to route the commands
received to the appropriate target components that ultimately
carry out the specifics of the command requested. In par­
ticular, the example command processor 22 comprises a
reception thread 60 and one or more command threads 62.
[0027] The reception thread 60 is responsible for receiving
commands placed in the shared memory 52. The reception
thread 60 continually scans the shared memory 52 for new
commands triggered by the use of global events.

US 2005/0132104 A1
3

Jun. 16, 2005

[0028] In the context of a motion control system, the
command threads 62 are of two types, where a first com­
mand thread 62a processes commands associated with the
data engine 34a and the second command thread 62ft
processes commands associated with the CNC motion sys­
tem 34ft and the GMC motion system 34c.
[0029] The following C++ objects are used to implement
portions of the example command processor 22.
[0030] The reception thread 60 comprises a ConfigMgr
object 70, a DataMgr object 72, and a QueueMgr object 74.
The ConfigMgr object 70 accesses configuration informa­
tion placed in the shared memory area 52 by the configu­
ration and status module 42. The DataMgr 72 pulls com­
mands from the memory area 50 shared with the service
clients 34. The example QueueMgr object 74 manages one
or more priority queues 76 servicing the command threads
62.
[0031] The command threads 62 each comprise a Sta-
tusMgr object 80, a QueueMgr object 82, and a Command-
Mgr object 84. The StatusMgr object 80 is manages and
updates the status area 52 of the shared memory used by the
configuration and status module 42. The status information
managed and updated by the StatusMgr object 80 may be
displayed to provide a user with visual feedback on what the
command threads 62 are actually doing at each point in time,
as well as the number of elements in the command queues.
The CommandMgr object 84 carries out each command by
calling the appropriate target components 32.
[0032] The interaction of the objects, threads and compo­
nents forming the command processor 22 will now be
described in several common use cases. The following use
cases will be described below: Initialization, System Start,
Command Processing (First Command Thread), Command
Processing (Second Command Thread), Receiving Data,
and Receiving Events. The steps making up each use case
are described in the order in which they occur.
[0033] Referring now to FIG. 2, the Initialization use case
will first be described. Initialization takes place when an
application, such as the command services application 40,
first starts up and loads the command processor 22. During
this process each of the threads are started and all C++
objects are initialized.
[0034] The following steps take place when initializing the
command processor 22. In step 1, the application hosting the
command processor 22, such as the XMC Windows NT
Service or COM+DLLHOST, starts up. In step 2, the host
application creates the component forming the command
processor 22. When first created, the component forming the
command processor 22 creates and starts the reception
thread 60 in step 3. In step 4, ConfigMgr, DataMgr and
QueueMgr objects 70, 72, and 74 used by the reception
thread 60 are created and initialized.
[0035] In step 5, the second command thread 62ft is
created and started. In step 6, an instance of the StatusMgr
object 80ft is created and initialized. Once created, this
component 80ft may be used to update status information on
the overall initialization process. In step 7, instances of the
QueueMgr and CommandMgr objects 82ft and 84ft are
created and initialized. In step 8, the CommandMgr object
84ft creates an instance of its associated target component
32 a.

[0036] In step 9, the command thread or threads 62 are
created and started. In step 10, an instance of the StatusMgr
object 80a is created and initialized, allowing status infor­
mation on the initialization progress of the command thread
62a to be set. In step 11, an instance of the CommandMgr
and QueueMgr objects 82a and 84a used by the thread 62a
are created and initialized.
[0037] At step 12, the CommandMgr creates an instance
of the command targets 32ft and 32c. In the context of a
motion control system, a multi-system configuration may
optionally use separate threads to process CNC and GMC
commands respectively.
[0038] After completing the initialization, the reception
thread 60 places itself in the ‘paused’ state so that it will not
process any commands until resumed. At this point the
command processor 22 is initialized and ready to be started.
[0039] Once initialized, the reception thread 60 must be
resumed from its paused state prior to use of the system 20.
No commands are processed until the reception thread 60 is
resumed.
[0040] Referring now to FIG. 3, the following steps occur
when starting the command processor 22. In step 1, the
hosting command service application 40 calls a method on
the command processor 22 component to ‘start’ the com­
mand processing. In step 2, upon receiving the ‘start’ call,
the command processor 22 component resumes the recep­
tion thread 60 causing the DataMgr object 72 to first query
for any configuration changes.
[0041] In step 3, the DataMgr object 72 queries the
ConfigMgr object 74 for any configuration changes such as
a new priority for the reception thread 60, etc. The Config­
Mgr object 70 queries the configuration shared memory for
any settings. Once started as shown at step 4, the DataMgr
object 72 resumes normal operation and continually checks
for new commands in the shared memory.
[0042] At this point all commands received are processed
normally. The following sections describe how two of the
main command types are processed; namely the example
command threads 62a and 62ft.
[0043] Referring first to FIG. 4, depicted therein is the
processing implemented by the second type of command
thread 62ft. In general, all commands associated with the
command target 32a are processed are routed to the first
command target 32a. Examples of the commands sent to the
command target 32a are ‘Start’ or ‘Pause’ and these com­
mands will be referred to as first type commands.
[0044] The following steps occur when processing com­
mands destined for the command target 32a. In step 1, the
command source 30ft calls the service client 34ft requesting
that a given first type command be run. As generally
discussed above, some commands may be initiated by the
host itself, a user interface application, or even a protocol
listener used to convert and route command 30 requests
using the service client 34ft.
[0045] In step 2, the service client 34ft packages the
command into an area within the shared memory area 50
specifically allocated for that instance of the service client
34ft. Within the command processor 22, the reception thread
60 is continually monitoring the shared memory 50 for new
commands as shown in step 3. Upon detecting a new

US 2005/0132104 A1
4

Jun. 16, 2005

command, the DataMgr object 72 extracts the command
information from the shared memory area 50.
[0046] In step 4, the DataMgr object 72 passes the com­
mand information to the QueueMgr object 74. In step 5, the
QueueMgr object 74 packages the command information
into a queue command element and places the command in
the priority queue 76b. The element may be placed at a
location in the queue based on the element’s priority so that
high priority commands are processed sooner than low
priority commands.
[0047] Within the command threads 62, the QueueMgr
object 74 implicitly receives the queued command (i.e. it is
the same queue accessed in the reception thread 60) as
shown in step 6.
[0048] As shown in step 7, the CommandMgr object 84ft,
which continually checks for new commands to run in the
command thread 62ft, detects a new command and pulls it
from the QueueMgr object 82ft. And finally in step 8, the
CommandMgr object directs the command to the command
target component 32a, which carries out the requested
command.
[0049] At this point the command is complete. However,
the mechanism just described does not allow notification
back to the service client 34ft that requested the command.
This type of command is known as a ‘broadcasted’ com­
mand, where the command is sent without sending back
status on the results of the command carried out.
[0050] As shown in FIG. 5, the first command thread 62a
operates in a manner similar to that of the second command
thread 62ft, except that commands routed through the first
command thread 62a are routed to one of the command
targets 32ft and 32c instead of the command target 32a.
[0051] The following steps occur when processing com­
mands destined for the command targets 32ft and 32c.
[0052] In step 1, the service client 30 calls the Service
Thin Client requesting to run a given first type command.
Again, some commands may be initiated by the host itself,
a user interface application, or even a protocol listener used
to convert and route command requests using the service
client 34.
[0053] In step 2, the service client 34a packages the
command into the area within the shared memory area 50
specifically allocated for that instance of the service client
34a.
[0054] Within the command processor 22, the reception
thread 60 is continually monitoring the shared memory for
new commands as shown in step 3. Upon detecting a new
command, the DataMgr object 72 extracts the command
information from the shared memory.
[0055] As shown in step 4, the DataMgr object 72 passes
the command information to the QueueMgr object 74. At
step 5, the QueueMgr object 74 packages the command
information into a queue command element and places the
command in the priority queue 76a. The element may be
placed at a location in the queue based on the elements
priority so that high priority commands are processed sooner
than low priority commands.
[0056] As shown at step 6, within the command thread
62a, the QueueMgr object 82a implicitly receives the
queued command (i.e. it is the same queue accessed in the
reception thread 60).

[0057] At step 7, the CommandMgr object 84a, which
continually checks for new commands to run in the com­
mand thread 62a, detects a new command and pulls it from
the QueueMgr object 82a.
[0058] And finally at step 8, the CommandMgr object 84a
directs the command to the command target component 32ft
and/or 32c which carries out the requested command.
[0059] At this point the command is complete. Again, no
notification is sent back to the service client 34 who
requested the command. This example command is known
as a ‘broadcasted’ command where the command is sent
without sending back status on the results of the command
carried out.
[0060] While running the command processor 22, often it
is important to display visual feedback on what the com­
mand processor 22 is actually doing. For example, the user
may want to know whether the command processor 22 is
currently processing a command or how many commands
are in the various command queues. The use case illustrated
in FIG. 6 illustrates how such user feedback can be attained
while running the command processor 22.
[0061] The following steps occur when updating status
while processing each command.
[0062] In a step 1, the StatusMgr objects 80a and 80ft
collect status information while each of the command
threads 62a and 62ft run. All status information is saved to
the status/configuration shared memory area 52.
[0063] In step 2, each application requesting status infor­
mation reads the shared memory area 52 where the status
information was placed.
[0064] The service client 34 that requested a command be
run will want or need feedback on the results of the
command and in many cases data that results from running
the command. The use case depicted in FIG. 7 describes
how feedback data may be returned to service clients 34.
[0065] The following steps occur when data and results
are to be returned to the service client 34.
[0066] In step 1, the service client 34 places the command
into the shared memory area 50. Included with the command
information is the name of the global event for which the
service client 34 is waiting and which should be set by the
command processor 22 upon completion of the command.
[0067] As shown in step 2, upon receiving the command,
the DataMgr object 72 extracts the command information
from the shared memory area 50, including the name of the
global event. At step 3, all command information is passed
to the. QueueMgr object 74.
[0068] As shown at step 4, the QueueMgr object 74
packages the command information into a command ele­
ment that is then placed within the appropriate command
priority queue 76a and/or 76ft.
[0069] In step 5, the CommandMgr objects 84 within the
command threads 62 detect the command by querying the
QueueMgr object 82ft. In step 6, the QueueMgr objects 82
return the command element or elements to the Command­
Mgr objects 84.
[0070] In step 7, the CommandMgr objects 84 run the
command by delegating it to the appropriate command

US 2005/0132104 A1
5

Jun. 16, 2005

target 32. Upon completion of the command, the Command-
Mgr objects 84 update the shared memory 52 referenced by
the command element with the return result and any data
returned by the command targets 32. Once all data is
updated, the CommandMgr objects 84 set the global event
referenced by the command element, notifying other com­
ponents of the command processor 22 that execution of the
command is complete.
[0071] In step 8, the event that the service client 34 is
waiting on is released, thus freeing the service client 34 to
continue with the data placed in the shared memory area 52
back in step 7. At this point the command processing for the
command is complete.
[0072] In some cases, it is desirable for the service client
34 to receive ‘unsolicited’ updates when certain events
occur. FIG. 8 depicts the situation in which the service client
34 receives updates upon the occurrence of certain events.
To receive events, the event component 44 is accessible by
the command client 34 and the command target 32. In
addition, the service client 34 calls a command source 30 to
‘subscribe’ to the event. Once subscribed, the event is fired
to the service client 34 when the event condition is met. The
following steps occur when events are sent back to the
service client 34.
[0073] In a first step, when the event condition is met, the
component that is the source of the event fires the event
using the event component 44. In step 2, the event compo­
nent 44 sends the ‘global’ event to all instances of the event
component 44. In step 3, the instance of the event compo­
nent 44 used by the service client 34 picks up the event and
calls an event handler on the service client 34. At this point
the event routing has completed.
[0074] Referring now to FIGS. 9-14, a modular design of
a command processing system 120 of the present invention
will now be described. The command processing system 120
comprises command processor 122. The command process­
ing system 120 is more scaleable than the command pro­
cessing system 20 described above in that it can support any
type of command without requiring any changes within the
command processor 122.
[0075] In general, two component types interact with one
another to process commands received: the command pro­
cessor 122 and a number of command execution compo­
nents that will be described in further detail below. As with
the system 20 described above, the system 120 transfers
commands between one or more command sources 130 and
one or more command targets 132. Each command source
130 is associated with a service client 134. The system 120
further comprises a command services module 140 and a
configuration and status module 142. The system 120 further
defines shared memory areas 150 and 152a, 152ft, and 152c.
[0076] To process commands, the command processor 122
routes each command received to an appropriate command
execution component 160 designated to handle the type of
command received.
[0077] Optionally, each of the command execution com­
ponents 160 may be given a global priority that dictates how
and when the command processor 122 sends commands
thereto. For example, FIG. 1 shows how three different
types of commands associated with three types of command
targets 132a, 132ft, and 132c may be supported. The design

is specifically intended to support many different kinds of
commands, including commands not yet defined by the
command implementer of the command processor 122 and/
or commands defined by a third party. The design of the
command processing system 120 thus allows for supporting
many different types of commands without requiring
changes in the overall command processor 22 architecture.
Another advantage of the design of the command processing
system 120 is that this design allows for the deployment of
new command types to the field where the command pro­
cessor 22 is already in use.
[0078] FIG. 10 is a slightly more detailed block diagram
illustrating the command processor 122 and each command
execution components 160.
[0079] The service client 134 functions as an interface
between a shared memory area 150 and is used to commu­
nicate command requests to the command processor 22. The
service clients 134 may also be used to relay input to the
command processor 22 by receiving command via some
other protocol such as TCP/IP, SOAP Messaging, etc., that
is transferred either locally or across a network. Once
received, the command is then converted into the appropri­
ate shared memory format to direct the command processor
22 that a new command is ready for processing. Optionally,
the service client 134 may communicate either locally or
across a network using the OLE/COM interface methods of
the components forming the command processor 122. This
method is not as fast, but can allow for architectural flex­
ibility.
[0080] The command processor component 122 receives
and delegates each command to the appropriate command
execution component 160. The command processor compo­
nent 122 may also run optionally as a COM+ component that
services SOAP or other Web Service requests, either directly
or via COM+. Optionally, the command processor 122 may
communicate with the command execution components 160
across a network.
[0081] Command execution components 160 are respon­
sible for running the set of commands associated with the
component. For example, individual command execution
components 160a, 160ft, and 160c run commands that are
destined for the target component 132a, 132ft, and 132c,
respectively. Optionally each individual command execu­
tion component 160 may run as a COM+ component. Again,
this may not optimize system speed, but can provide desir­
able architectural flexibility.
[0082] The command execution components 160 may
support using Artificial Intelligence to break down generic
commands into a set of more complex commands used to
carry out a task. As used herein, the term “artificial intelli­
gence” refers to algorithms such as Neural Networks,
Genetic Algorithms, Fuzzy Fogic, Expert Systems, combi­
nations of all listed and other computer based decision
making and pattern matching based systems. For example, a
generic command may state to lift up a box. This command
would then be broken down into the sequence of moves
given the current position of a loader arm, necessary to pick
up the box. The command execution component 160 may
use Artificial Intelligence to do such a breakdown.
[0083] When communicating to the target component 132,
the command execution component 160 may do so either

US 2005/0132104 A1
6

Jun. 16, 2005

locally or across a network depending on the overall system
architecture. In the event that the commands sent contain a
critical operation that must run as a set of commands or not
at all, the command processor may employ a form of
command ‘framing’ as generally described above.
[0084] The example command service component 140 is a
very thin Windows NT Service that optionally hosts the
command processor 122 thus allowing the command pro­
cessor to run even while the current user is not logged into
the system. It should be noted that future versions may not
need this service as COM+ supports running components as
a services. Since the command processor component 122
optionally supports COM+ it may also be run as a service in
COM+.
[0085] The configuration and status module application
142 allows the user to configure the command processor 122
and various command execution components 160 and obtain
status on how each component is running.
[0086] The command targets 132 are or may be similar to
the command targets 32 described above, and the command
targets 132 will not be described again herein beyond what
is necessary for a complete understanding of the present
invention.
[0087] Like the event component 44 described above, the
event component 44; sends event data received from one of
the various command targets 132 to one or more ‘listening’
service clients 134.
[0088] The details of the example command processor 122
will now be described in detail. The example command
processor 122 comprises several C++ objects and a Win­
dows NT thread that interact with one another to route the
commands received to the appropriate command execution
component 160.
[0089] The command process comprises a reception
thread 170 that receives commands placed in the shared
memory area 150. The thread 170 continually scans for new
commands in the shared memory area 150. The new com­
mands may be triggered by the use of global events.
[0090] The following example objects are C++ objects
used to implement portions of the command processor 122.
A ConfigMgr object 172 pulls configuration information set
in the shared memory area 150 by the configuration and
status module 142. A DataMgr object 174 pulls commands,
:stored by the service client 134 in the shared memory area
150.
[0091] The command execution components will now be
described in further detail. Within the command execution
component 160 several C++ objects and a Windows NT
thread interact with one another to run the commands
received.
[0092] Each command execution component 160 com­
prises a command thread 180. The command threads 180
process commands destined for the command target 132 that
supports the command set associated with the command
execution component 160.
[0093] The following C++ objects are used to implement
portions of the command execution component 160. A
QueueMgr object 182 is responsible for managing the
various priority queues 184 servicing the command threads
162.

[0094] A StatusMgr object 190 manages and updates the
status area of the shared memory used by the configuration
and status module 142. The status information updated is
used to allow visual feedback on the state of the command
threads 62 as well as the number of elements in the com­
mand queues 184.
[0095] A CommandMgr object 192 carries out each com­
mand by calling the appropriate command targets 132.
[0096] The interaction of the objects, threads and compo­
nents of the command processing system 120 will now be
described in reference to several common use cases that take
place on the command processor 122 during normal use. The
following use cases will be described in detail below:
Initialization, Command Processing, Receiving Events, and
Updating Status.
[0097] As shown in FIG. 11, when initializing the system,
the following steps take place. In step 1, before actually
starting the initialization of the component, the user may
optionally change the configuration of the component using
the configuration and status application 142, which allows
the user to configure the command processor 122 and/or all
command execution components 160.
[0098] At step 2, when actually initializing the component,
the command target 132 (optionally a DLLHOST used when
run as a COM+ server) creates the command processor
component 122 and directs it to initialize itself.
[0099] At step 3, when created, the command processor
122 creates the reception thread 60 and runs it. Within the
reception thread 60 the ConfigMgr is initialized at step 4. At
step 5, the reception thread 60 initializes the DataMgr object
174.
[0100] During its initialization, the DataMgr object 174
queries the ConfigMgr object 172 for settings previously
made by the user. For example, the list of command execu­
tion components 160 installed is queried.
[0101] At step 7, the DataMgr object 174 then creates each
command execution component 160. When created, each
command execution component 160 creates its command
thread 180 and starts running it at step 8. Within the
command thread 180, the StatusMgr, QueueMgr and Com­
mandMgr objects are next initialized at step 9.
[0102] Upon completion of the command execution com­
ponent 160 creation, at step 10 the DataMgr object 174
within the reception thread 170 of the command processor
122 sends a command to the command execution component
160 directing the execution component 160 to initialize
itself.
[0103] At step 11, the initialization command is received
by the QueueMgr object 192 in the command execution
component 160. At step 12, the QueueMgr object 192
immediately places the command received into the com­
mand queue 184.
[0104] Within the command thread 180 of the command
execution component 160, at step 13 the CommandMgr
object 194 queries the QueueMgr object 192 for any new
commands and pulls the initialize command from the queue
(previously placed in the queue in step 12 above).
[0105] The CommandMgr object 194 creates the appro­
priate command target 132 at step 14, which runs the

US 2005/0132104 A1
7

Jun. 16, 2005

commands in the set associated with the specific command
execution component 160. The command target 132 is also
directed to initialize itself making it ready to process com­
mands. Upon completing the initialization, the Command-
Mgr 194 unlocks the Windows Event associated with the
command signifying that the command has been completed.
[0106] Referring back to the DataMgr object 174 within
the reception thread 170 in the command processor compo­
nent 122, the DataMgr object 174 detects that the command
has been completed and prepares to run more commands as
shown at step 15.
[0107] The creation process, in which the command pro­
cessor 122 and command execution components 160 are
created, and the initialization process may optionally be
separated. In this case, a specific command is first created
and then a specific ‘initialize’ command is then sent to the
command processor directing it to prepare for receiving
commands. In such a situation, the command processor 122
could block (wait until the initialization command com­
pleted) and then return the results of the initialization back
to the configuration and status application 142 (or other host,
such as DLLHOST, or a service client 134 using DLL-
HOST).
[0108] At this point the command processor 122 is run­
ning and ready to process commands from the service client
or clients 34.
[0109] Referring now to FIG. 12, the following steps take
place when processing a given command. In step 1, the
service client 134 software calls the service client 134
directing it to run a given command.
[0110] In the step 2, the service client 134 then places the
command information into the shared memory area 150
designated by the command processor 122 for the specific
instance of the service client 134 (this designation occurs
when first creating the service client 134). Optionally, the
service client 134 then waits for the command processor 122
to signal that the event has completed. This signaling occurs
either through information passed through the shared
memory or with a global synchronization object, like a
Windows NT Event object.
[0111] In step 3, the DataMgr object 174 of the reception
thread 170 in the command processor 122 detects that a
command is ready in the shared memory 150. The command
information is extracted from the shared memory 150.
[0112] In step 4, the DataMgr object 174 sends the com­
mand information to the command execution component
160.
[0113] Upon receiving the command information, the
information is routed to the QueueMgr 192 which then
places the command information into the command queue at
step 5. Optionally, the command information is placed into
the queue 184 at a location specified by the command
priority. For example, a high priority command may be
placed at the beginning of the queue (i.e. pulled off the queue
first) whereas a low priority command may be placed at the
end of the queue (i.e. pulled off the queue last).
[0114] In step 6, the CommandMgr 194 within the com­
mand thread 180 queries the QueueMgr 192 for any com­
mands that may exist and, if one does exist, pulls the
command from the front of the command queue 184.

[0115] The command is then run at step 7 by passing the
command to the command target 132 used to run the
command. For example, second type command might be
passed to the second command target 160ft.
[0116] At step 8, upon completion of the command, the
CommandMgr 194 copies all return data into the shared
memory 150 and then either toggles information in the
shared memory 150 associated with the command or signals
a synchronization object, such as a Windows NT Event, to
signify that the command has completed.
[0117] In step 9, the service client 134 detects that the
command has completed and picks up any return data placed
in the shared memory 150 and returns it to the command
source 30.
[0118] At this point the command processing has com­
pleted.
[0119] Referring now to FIG. 13, the following steps
occur when the service client 134 receives unsolicited events
from the command target 132.
[0120] When the event condition is met (the event condi­
tion being previously configured), the command target 132
fires the event using the event component 144 as shown in
step 1. In step 2, the event component 144 fires the event to
all listening components including other instances of the
event component 144. In step 3, the instance of the event
component 144 used by the service client 134 picks up the
event and routes it to the service client 134. The service
client 134 then routes the event information to the command
source 130.
[0121] At this point the event processing is complete.
[0122] Referring now to FIG. 14, the following steps take
place when updating status information while the command
processor component 122 and command execution compo­
nent 160 process commands.
[0123] In step 1, during each loop within each command
execution component 160 status information is continuously
updated using the StatusMgr object 190. For example, the
number of commands in the command queue 174 may be set
in the status shared memory 152.
[0124] The configuration and status module 142 is then
able to pick up the information from the shared memory and
display it to the user, thus notifying the user of the status of
each command execution module 160 (and optionally com­
mand processor 122) components. Optionally, a separate
thread may be used to monitor status information so as to not
slow down or otherwise interfere with the command thread.
[0125] As generally described above, the example com­
mand processor 122 is a modular system made up of a set of
components (i.e. each component is based on a component
technology such as OLE/COM from Microsoft Corpora­
tion). Optionally, each component uses a separate ‘parallel’
ActiveX component to implement all user interface aspects
of the main component. Each ActiveX component may be
implemented either within the main component module or
separately in its own module. Bundling each object within
one module is not required as the objects may be located at
any location (i.e. across a network, and so forth), but doing
so may optimize communication between modules. The
exact location of the components in any given implemen­

US 2005/0132104 A1
8

Jun. 16, 2005

tation of the present invention is merely a logistical decision.
Once components are built and deployed, it is difficult to
update a single component if all components are imple­
mented within a single DLL or EXE module.
[0126] As shown in FIG. 15, the example components
forming the command processor 122 implement, at a mini­
mum, a single interface: the IXMCDirect interface. Option­
ally, components that receive events from other components
can implement the IXMCDirectSink interface as well.
[0127] OLE Categories are used to determine how many
components fall into a certain group of components. Cur­
rently the following categories are used:
[0128] command processor components— Typically there
is only one command processor component 122. However,
in the event that the command processor improves over time
and has future more improved versions, each new and
improved version would fall into this category of compo­
nents.
[0129] command execution components— command
execution components 160 are used to process a set of
commands of a given type. For example, the first command
target 132a, the second command target 132ft, and the third

command target 132c represent command types that may
each have an associated command execution component
160.
[0130] The IXMCDirect interface is used for most com­
munications between all components making up the com­
mand processor 122 Technology. The following methods
make up this interface (as specified in the standard OLE/
COM IDL format):
[0131] GetProperty— This method is used to query a spe­
cific property from the component implementing the inter­
face.
[0132] SetProperty— This method is used to set a specific
property from the component implementing the interface.
[0133] InvokeMethod— This method is used to invoke a
specific action on the component implementing the inter­
face. It should be noted that an action can cause an event to
occur, carry out a certain operation, query a value and/or set
a value within the component implementing the method.
[0134] A more detailed description of each method imple­
mented by the object is described below.

IXMCDirect: :GetProperty
Syntax HRESULT GetProperty(LPCTSTR pszPropName,

LPXMC_PARAM_DATA rgData,
DWORD dwCount);

Parameters LPCTSTR pszPropName - string name of the property to query.
LPXMC_PARAM_DATA rgData - array of XMC_PARAM_DATA
types that specify each parameter corresponding to the property.
For example, a certain property may be made up of a number of
elements - in this case an array of XMC_PARAM_DATA items is
returned, one for each element making up the property. In most
cases a property is made up of a single element, thus a single
element array is passed to this method. For more information on
the XMC_PARAM_DATA type, see below.
DWORD dwCount - number of XMC_PARAM_DATA elements in the
rgData array.

Return Value HRESULT - NOERROR on success, or error code on failure.

[0135] This method is used to query the property corre­
sponding to the property name ‘pszPropName’. Each com­
ponent defines the properties that it supports.

IXMCDirect: :SetProperty
Syntax HRESULT SetProperty(LPCTSTR pszPropName,

LPXMC_PARAM_DATA rgData,
DWORD dwCount);

Parameters LPCTSTR pszPropName - string name of the property to set.
LPXMC_PARAM_DATA rgData - array of XMC_PARAM_DATA
types that specify each parameter corresponding to the property.
For example, a certain property may be made up of a number of
elements - in this case an array of XMC_PARAM_DATA items is
returned, one for each element making up the property. In most
cases a property is made up of a single element, thus a single
element array is passed to this method. For more information on
the XMC_PARAM_DATA type, see below.
DWORD dwCount - number of XMC_PARAM_DATA elements in the
rgData array.

Return Value HRESULT - NOERROR on success, or error code on failure.

US 2005/0132104 A1
9

Jun. 16, 2005

[0136] This method is used to set a property in the
component corresponding to the ‘pszPropName’ property.
For the set of properties supported by the component, see the
specific component description.

IXMCDirect: :InvokeMethod
Syntax HRESULT InvokeMethod(DWORD dwMethodldx,

LPXMC_PARAM_DATA rgData,
DWORD dwCount);

Parameters DWORD dwMethodldx - number corresponding to the specific
method to invoke. For more information on the method indexes
available, see the set of namespaces defined for the component.
LPXMC_PARAM_DATA rgData [optional] - array of
XMC_PARAM_DATA types that specify each parameter for the
method called. For more information on the
XMC_PARAM_DATA type, see below.
NOTE: if no parameters exist for the method called, a value of
NULL must be passed in.
DWORD dwCount [optional] - number of XMC_PARAM_DATA
elements in the rgData array.
NOTE: if no parameters exist for the method called, a value of 0 (zero)
must be passed in for this parameter.
LPXMC_PARAM_DATA rgData [optional] - namespace
associated with the instance of the custom extension module added.

Return Value HRESULT - NOERROR on success, or error code on failure.

[0137] This method is used to call a specific method
implemented by the component. For more information on
the methods supported, see the description of the specific
component.
[0138] The IXMCDirectSink interface is an event recep­
tion point on which one component can send event data to
another. The component implementing this interface is the
event receiver. The event source calls the interface passing
to it event data.

[0139] The IXMCDirectSink interface is made up of the
following functions.

[0140] OnEvent— This method is called by the event
source when an event occurs (i.e. the conditions
defining the event are met).

[0141] OnError— This method is called by the event
source when an error occurs.

[0142] A more detailed description of each method imple­
mented by the object is described below.

KMCDirectSink: :OnEvent

Syntax

Parameters

Return Value
Notes

rgData[0]

rgData[l]

rgData[2]

rgData[3]

rgData[4]

HRESULT OnEvent(long lApildx,
SAFEARRAY* * ppSA);

long lApildx - index associated with the event type..
SAFEARRAY** ppSA - pointer to a pointer to a SAFEARRAY
containing an array of XMC_PARAM_DATA structures. For
more information on the XMC_PARAM_DATA type, see below.
HRESULT - NOERROR on success, or error code on failure.
The SAFEARRAY passed to this method contains an array of
XMC_PARAM_DATA structures. This array has the following entries:
LONG IConnectionCookie - unique cookie associated with this
connection to the XMC Motion Server (returned when calling the
InitializeHardware method on the XMC Motion Server).
DWORD dwSubscriptionCookie - unique cookie associated with
the subscription for which this event has fired. This cookie is
returned when making the subscription.
DWORD dwDataCookie - unique cookie associated with the
specific data change that triggered the event. This cookie is
generated within the XMC Motion Server.
LPCTSTR pszItemName - name of the item or variable for which
the subscription is associated.
double dfTimeStamp - number of milliseconds passed from the
time that the event pump, implemented by the XMC Motion
Server, was first started.

US 2005/0132104 A1
10

Jun. 16, 2005

-continued
IXMCDirectSink: :OnEvent

rgData[5] DWORD dwDataCount - number of data values associated with
the event (i.e. the number of structure elements that follow).

rgData[6 + Number or String - actual data values associated with the event.
n]

[0143] This method is called by the event source and
passed the event data in a SAFEARRAY form for easy
marshalling across process boundaries.

IXMCDirectSink: :OnError
Syntax
Parameters

Return Value
Notes
rgData[0]

rgData[l]

rgData[2]

rgData[3]
rgData[4]

rgData[5]
rgData[6]
rgData[7]

rgData[8]

HRESULT OnError(long IApildx,
SAFEARRAY** ppSA);

long lApildx - index associated with the event type..
SAFEARRAY** ppSA - pointer to a pointer to a SAFEARRAY
containing an array of XMC_PARAM_DATA structures. For
more information on the XMC_PARAM_DATA type, see below.
HRESULT - NOERROR on success, or error code on failure.
The SAFEARRAY passed to this method contains an array of
XMC_PARAM_DATA structures. This array has the following entries:
LONG IConnectionCookie - unique cookie associated with this
connection to the XMC Motion Server (returned when calling the
InitializeHardware method on the XMC Motion Server).
DWORD dwSubscriptionCookie - unique cookie associated with
the subscription for which this event has fired. This cookie is
returned when making the subscription.
DWORD dwDataCookie - unique cookie associated with the
specific data change that triggered the event. This cookie is
generated within the XMC Motion Server.
LPCTSTR pszItemName - name of the item or variable for which
the subscription is associated.
double dfTimeStamp - number of milliseconds passed from the
time that the event pump, implemented by the XMC Motion
Server, was first started.
HRESULT hrResult - result code of the error for which the event
is associated.
LPCTSTR pszError - string description of the error.
LONG ISrcError - error code describing the source of the error.
For example, this may be an error code returned by a computer
controlled piece of hardware.
LPCTSTR pszSrcError - string describing the source error.

[0144] This method is called by the event source when an
error occurs and passed the event error data in a SAFEAR­
RAY form for easy marshalling across process boundaries.
[0145] The methods supported by each component mak­
ing up the system 120 will now be described. In particular,
the methods supported by the majority of the components
will be described below. For the specific list of methods
supported by each component, see the section describing
each component.

XMC_CP_SYSTEM_CONNECT_CMPNT

Index 8000
Data In rgData[0] - (number) DWORD, type of component. The type

of component is a value that is server specific. For

-continued
XMC_CP_SYSTEM_CONNECT_CMPNT

component type information, see the description
for this method under each
server’s description.
rgData[l] - (string) LPTSTR, component class id as an
ASCII string.

Data Out None.

[0146] This method is used to connect one server to
another so that they may interact with one another.

XMC_CP_SYSTEM_DISCONNECT_CMPNT
Index 8001
Data In rgData[0] - (number) DWORD, type of component. The type

of component is a value that is server specific. For

US 2005/0132104 A1
11

Jun. 16, 2005

-continued
XMC_CP_SYSTEM_DISCONNECT_CMPNT

component type information, see the description for this
method under each server’s description.
rgData[l] - (string) LPTSTR, component class id as an
ASCII string.

Data Out None.

[0147] This method is used to disconnect one server to
another so that they stop interacting with one another.

XMC_CP__PROCESS_START
Index 8500
Data In None.
Data Out None.

[0148] This method is called to start the command pro­
cessor technology making it ready to process commands.

XMC_CP_PROCESS_ENABLE
Index 8501
Data In rgData[0] - (number) BOOL - TRUE enables the command

processor, FALSE disables it. The command processor only
processes commands when it is enabled.

Data Out None.

[0149] This method is used to configure what type of data
is returned when processing a given data item. For example
in the server may be configured to return the minimal
amount of data on each read (i.e. just the data item value),
or the server may be requested to return more substantial
data.

[0151] This method enables/disables a previously sub­
scribed data item in the subscription list maintained by the
server. Only enabled subscriptions actually fire.

XMC_DE_EVENT_RECEIVE_DATA

Index 8045
Data In rgData[0] - (number) DWORD, subscription cookie

corresponding to the subscribed data item.
rgData[l] - (number or string), data item value.
rgData[2] - (OPTIONAL number) DWORD, data item time-
stamp as a system time value.
rgData[3] - (OPTIONAL string) LPSTR, data item ASCII text
name.
rgData[4] - (OPTIONAL number) DWORD, data item unique
cookie.
NOTE: Since the last three items are optional, only those
items specified when configuring the data to receive
are actually sent. If, for example, one or more
data items are NOT requested, then the
items are returned in slots shifted up toward rgDatafl]. For
example if only the data item name is requested in addition
to the default data items, the data returned
would look like the following:
rgData[0] - (number) DWORD, subscription cookie.
rgData[l] - (number or string), data item value.
rgData[2] - (string) LPSTR, data item name.

Data Out None.

[0152] This method is called by the server (and imple­
mented by the service client 34) when each subscribed event
fires.

XMC_CP__PROCESS_STOP
Index 8061
Data In None.
Data Out None.

[0150] This method is called to shut-down the command
processor.

XMC_DE_EVENT_ENABLE
Index 2892
Data In rgData[0] - (number) DWORD, cookie (unique identifier)

associated with the subscription. This value is returned to the
service client 34 when calling the subscription COMMAND
SOURCE #1 above.
NOTE: using a cookie value of zero (0) will enable/disable
ALL items subscribed to the server.
rgData[l] - (number) BOOL, TRUE to enable the
subscription(s), FALSE to disable the subscription(s).
Only enabled subscriptions actually fire events.

Data Out None.

XMC_DE_EVENT_RECEIVE_DATA_CONFIGURE
Index 8044
Data In rgData[0] - (number) DWORD, flag describing the type of

data to be returned on each event.
The following flags are supported:
XMC_DE_EVENT_DATA_FLAG_TIMESTAMP -
requests that the time stamp recorded
when reading the data is returned.
XMC_DE_EVENT_DATA_FLAG_NAME -
requests that the data items ASCII text name be returned.
XMC_DE_EVENT_DATA_FLAG_DATA_COOKIE -
requests that the unique data item cookie corresponding
to the read made for the data item be returned.
NOTE: by default, the subscription cookie and data item
value are always returned.

Data Out None.

[0153] This method is used to configure what type of data
is returned on each event that is fired. For example in the
server may be configured to send the minimal amount of
data on each event (i.e. subscription cookie and data item
value), or the server may be requested to return more
substantial data.

US 2005/0132104 A1
12

Jun. 16, 2005

XMC_DE_EVENT_SUBSCRIBE
Index 2890
Data In rgData[0] - (number) DWORD, flags describing the initial state of

the subscription. The following flags are supported:
XMC_DE_EVENT_FLAG_ENABLED - subscription is
immediately enabled upon subscription.
XMC_DE_EVENT_FLAG_DISABLED - subscription is disabled
upon making the subscription. The Enable function must be
called to enable the subscription.
rgData[l] - (number) DWORD, number of subscription criteria
rules.
rgData[2 + (2*n)] - (number) DWORD, event condition type where
the following types are supported:
XMC_CNC_EVENTCONDITION_DATA_CHANGE - any data
changes in the data type above will trigger the event.
XMC_CNC_EVENTCONDITION_DATA_EQUAL
XMC_CNC_EVENTCONDITION_DATA_LESSTHAN
XMC_CNC_EVENTCONDITION_DATA_GREATERTHAN
XMC_CNC_EVENTCONDITION_DATA_AND
XMC_CNC_EVENTCONDITION_DATA__OR
Each of the conditions above are used in a combined manner.
Where the logical condition (=, <, >) are applied for each type respectively.
For example, in an array that contains the following items:
rgData[2] = 4 (4 condition values)
rgData[3] = XMC_CNC_EVENTCONDITION_EQUAL
rgData[4] = 3.0
rgData[5] = XMC_CNC_EVENTCONDITION_LESSTHAN
rgData[6] = 3.0
rgData[7] = XMC_CNC_EVENTCONDITION_OR
rgData[8] = 1.0
rgData[9] = XMC_CNC_EVENTCONDITION_GREATHERTHAN
rgData[10] = 5.0
the array would be evaluated using the following logic:
If (DATA <= 3.0 OR DATA > 5.0) then Trigger Event
rgData[3 + (2*n)] - (number) double, the value for the condition.
See above.

Data Out rgData[0] - (number) DWORD, cookie (unique identifier)
representing the subscription.

[0154] This method subscribes to a given data item acti­
vating the event interface when the subscription criteria are
met for the data item. In the example system 120, all
ubscribing components must use the IXMCDirect interface
to receive events received from the server for which they are
subscribed.

XMC_DE_EVENT_UNSUBSCRIBE

Index 2891
Data In rgData[0] - (number) DWORD, cookie (unique identifier)

associated with the subscription. This value is returned to the
service client 34 when calling the subscription COMMAND
SOURCE #1 above.
NOTE: using a cookie value of zero (0) will unsubscribe
ALL items subscribed to the server.

Data Out None.

[0155] This method removes a previously subscribed data
item from the subscription list maintained by the server.

XMC_DE__SYSTEM_INITIALIZE HW
Index 500
Data In None.
Data Out None.

[0156] This method is used to initialize any hardware
systems associated with the component.

XMC_DE_SYSTEM._SHUTDOWNHW
Index 501
Data In None.
Data Out None.

[0157] This method is used to shut down any hardware
systems associated with the component.
[0158] The command processor component 122 imple­
ments the following general methods listed above.

US 2005/0132104 A1 Jun. 16, 2005
13

Method Implemented
Not

Implemented

XMC_CP_PROCESS_START X X
XMC_CP_PROCESS_ENABLE X X
XMC_CP_PROCESS_STOP X
XMC_DE_EVENT_ENABLE X
XMC_DE_EVENT_RECEIVE_DATA X
XMC_DE_EVENT_RECEIVE_DATA_CONFIGURE X
XMC_DE_EVENT_SUBSCRIBE X
XMC_DE_EVENT_UNSUBSCRIBE X
XMC_DE_SYSTEM_CONNECT_CMPNT X
XMC_DE_SYSTEM_DISCONNECT_CMPNT X
XMC_DE_SYSTEM_INITIALIZEHW X
XMC_DE_SYSTEM_SHUTDOWNHW X

[0159] There are no special notes for the methods that this
component implements.
[0160] The command execution components 160 imple-
ment the following general methods listed in
component methods section above.

the general

Method Implemented
Not

Implemented

XMC_CP_PROCESS_START X
XMC_CP_PROCESS_ENABLE X
XMC_CP_PROCESS_STOP X
XMC_DE_EVENT_ENABLE X
XMC_DE_EVENT_RECEIVE_DATA X
XMC_DE_EVENT_RECEIVE_DATA_CONFIGURE X
XMC_DE_EVENT_SUBSCRIBE X
XMC_DE_EVENT_UNSUBSCRIBE X
XMC_DE_SYSTEM_CONNECT_CMPNT X
XMC_DE_SYSTEM_DISCONNECT_CMPNT X
XMC_DE_SYSTEM_INITIALIZEHW X
XMC_DE_SYSTEM_SHUTDOWNHW X

[0161] There are no special notes for the methods that this
component implements.
[0162] The definitions of all special types used by the
methods and properties of each component making up the
command processor system 122 will now be described.
[0163] XMC_PARAM_DATA Structure
[0164] All methods exposed by each component in the
example system 122 use a standard parameters set to
describe data used to set and query properties as well as
invoke methods. The standard parameters are in the follow­
ing format:

[0165] pObj->InvokeMethod(LPXMC_PARAM-
_DATA rgData, DWORD dwCount);

[0166] Each element in the rgData array corresponds to a
parameter, with the first element in the array corresponding
to the first parameter.

[0167] The XMC_PARAM_DATA structure can contain
either a numerical or a string value and is defined as follows:

typedef struct tagXMC_PARAM_DATA
{

LNG_PARAM_DATATYPE adt;
union
{

double df;
LPTSTR psz;

};
}XMC_PARAM_DATA;

[0168] The ‘adt’ member of the XMC_PARAM_DATA
structure describes the data contained within the XMC_
PARAM DATA structure. The values are described below:

US 2005/0132104 A1
14

Jun. 16, 2005

LNG_PARAM_DATATYPE Description
LNG_ADT_NUMBER Use this value when passing a numerical value

via the ‘adt’ member of the
XMC_PARAM_DATA structure.

LNG_ADT_STAT_STRING Use this value when passing a static string value
via the ‘psz’ member of the
XMC_PARAM_DATA structure. Static
strings do not need to be freed from memory.

LNG_ADT_MEM_STRING Use this value when passing a string value via
the ‘psz’ member of the XMC_PARAM_DATA
structure. LNG_ADT_MEM_STRING denotes
that the string must be freed from memory during cleanup.

LNG_ADT_NOP This value is used to ignore items within the
XMC_PARAM_DATA array. When specifies, this
parameter is not used.

[0169] When querying and setting boolean TRUE/FALSE
values, any non-zero value is considered TRUE, whereas a
zero value is considered FALSE.
[0170] The command processor 122 of the present inven­
tion may be used on more than just motion based devices
and machines, although the present invention is of particular
significance in that environment. The principles of the
present invention may also be used to send commands to
medical devices where each command directs the medical
device to carry out a set of operations. It may also be used
to send commands to farming equipment, heavy machinery
such as tractors, excavators, bulldozers, cranes, semi-trucks,
automobiles, drilling equipment, water craft such as sub-
mersibles, boats and ships, airplanes (including jets), space­
craft, satellites, and any other kind of mobile device or
machine that moves on land, water or within the air or space.
[0171] The technology implemented by the present inven­
tion may be used to send commands in the following
environments:

[0172] office equipment such as printers, fax
machines, telephone systems, internet routers, inter­
net firewalls and security cameras and general secu­
rity systems.

[0173] general consumer devices such as home enter­
tainment systems, televisions, microwaves, ovens,
refrigerators, washers and driers, vacuums, hand
held music systems, personal digital assistants, toys,
musical instruments, etc.

[0174] yard items such as lawn mowers, yard care
devices, snow blowers, air blowers, edger’s, etc.

[0175] military equipment such as drone airplanes,
drone tanks, drone land mobiles, drone boats, tanks,
ships, jets and any other mobile or stationary devices
used on land, sea or in the air or space.

[0176] various types of factory equipment that may
or may not use motion to carry out its task, such as
i/o devices, analog devices, CNC machines, General
Motion machines, FMS machines, measuring sys­
tems, etc.

[0177] animatronics devices such as robot dogs,
robotic mannequins, robotic helpers, or other robotic
human-like or robotic animal like devices.

[0178] The term “command data” as used herein refer to
any numeric or string data values used to describe the
command and parameters describing how to perform the
command. For example, BIT, BYTE, WORD, DWORD,
LONG, REAL, DOUBLE, FLOAT, STRING, ASCII
STRING are a few command data types that represent
commands and/or command parameters. Command data
may eventually be sent to the command target by writing
register values on the command target, writing to shared
memory provided by the command target, sending com­
mands to the command target for which a data response is
given containing the data requested, writing to variables
provided by the command target, reading and writing to
variables in a sequence necessary to carry out the com­
manded operation, using a proprietary or standard data
protocol, calling a function provided by the command target,
etc.
[0179] From the foregoing, it should be apparent that the
invention may be embodied in forms other than those
described above. The scope of the present invention should
thus be determined by the following claims and not the
foregoing detailed description of the invention.
What is claimed is:

1. A command processing system for transferring com­
mands from at least one command source to at least one
command target of at least one command target type, com­
prising:

a command processor in communication with the at least
one command source; and

a command thread associated with each command target
type; wherein

the command thread is in communication with the com­
mand processor,

the command thread is in communication with at least one
command target;

the command source transfers commands to the command
processor; and

the command thread transfers commands from the com­
mand processor to the command target.

