Multiple removal based on wavefield extrapolation

Daniel Trad

1 Introduction

Either forward or inverse modeling is required to deal with the properties of the subsurface
that determine the reflected waves. Inverse modeling becomes very complicated, particularly
when there are problems of instability and non-uniqueness. Forward modeling is simpler,
but even so it becomes complicated for a general situation. In this section I will present
the basic theory and simple examples concerning forward and inverse modeling following
closely the work of Berkhout (1985). At the end the theory of multiple attenuation based
on wavefield extrapolation will be considered.

The data represent upgoing reflected waves, related to downgoing source waves. Hence, a
wave separation of the measured seismic data must be previously applied. This method is
called one way approach because the downgoing and upgoing fields are computed separately.
Another approach is the two way technique in that the total response (primaries and multi-
ples ) is computed by extrapolating simultaneously the continuous wavefield components P

and %%—I:.
2 Theory

Wavefield extrapolation is based on the Kirchhoff integral, which comes from substituting

the wave equation into Green’s second theorem

/V [FV’G — GVF|aV = 745 [FVG — GVF] 4 dS. (1)

Suppose we have a closed, source free surface S. We choose F as the pressure field which is
generated by sources outside S
F = P(z,y,2,w) (2)

where P satisfies
V2P + k*P = 0. (3)
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G is chosen as the Fourier Transformed pressure for a compressional wavefield which is

generated by a monopole in a point A inside S (Green’s function)

G- exp(—jkr) @)
T
with
r= \/(37 - xa)Q + (y - ya)2 + (Z - Za)2- (5)
G satisfies
V2G + kG = —4n8(x — 74)6(y — ¥a)0(2 — 24) (6)
and Green’s theorem becomes
jﬂ [PVG — GVP].WdS = —4n /V P8(x — 24)0(y — va)0(z — 22)dV (7)
or using the shift property
753 [PVG — GVP] 4 dS = —4nPa. (8)

where P, is the wavefield in z,,%,. The motion equation states the relation between accel-

eration and the pressure gradient

oP OVn
an —Po ot (9)
As usual we consider V(z,y, 2,t) = f(2,¥,2) exp(—jwt)
oP .
o po(jwpoVn)- (10)
By substituting
}{ {P?g + (jwpoVn)G} A dS = —4nPy (11)
s| On
Substituting G, and g—f‘f—
1 0 (e—x—p—(%lk—rl) exp(—Jkr)
- — o WD vy § S A 1
Pi= 72 Pt (jupVa) =, i dS (12)

This expression tell us how to compute P, at any point in a source free halfspace due to
sources in the other halfspace. Using the Green’s function in Eq. (4), the normal derivative

results in 5G 14 ik
_ JRT i
5 = > exp(—jkr)cos @ (13)
cos ¢ = or (14)
on
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Equation (12) is the Kirchhoff’s integral for a homogeneous medium. This integral integral
states that any pressure field may be synthesized by means of a monopole and a dipole
distribution on a closed surface S. The strength of each monopole is given by the normal
component of the velocity in S, the strength of each dipole is given by the pressure in S.

Kirchhoff’s integral is not very useful in practice because we need to know the pressure and
particle velocity data on a closed surface. However, from the Kirchoff integral it is possible
to derive the Rayleigh integrals, which are very useful for seismic applications.

Let us choose for closed surface S the plane z = 0 and a hemisphere in the top half space.
Letting the radius of the hemisphere becomes infinitely large, we can reduce the surface
integral to the plane z = 0. Eq. (4) for Green’s function was a particular function chosen to
satisfy the Green’s second theorem but it also could be chosen with a constant H and still
satisfy Green’s theorem

G L

: (15)

If H is such that
?_g 1+ gkr
on 12
on z = 0, the same previous derivation for P4 produces the so called Rayleigh integral of
type L:

exp(—jkr)cos¢ =0 (16)

p, = um / y, R(=kr) ) a7)
27 = JLy T

and it represents the pressure in S due to a monopole source on z = 0.

By a similar argument we can choose H such that G = 0 for z = 0. This produces the
Rayleigh integral of the second kind. The Rayleigh II integral states that any pressure field
can be synthesized by a dipole distribution on the plane z = 0.

1 14 jkr .
P(za,y4, 2i-1,w) = %/Lm /LyP(w,y,zi,w)——g— exp(—jkr) cos ¢dzdy (18)

T

£S89

where cos ¢ = g% = £

or its 2D version

ik
Pz, 2zii1,w) = —% /Lm P(m,zi,w)H§2)(kAr) cos ¢pdx (19)
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where H fz) is the first order Hankel function of the second class

B = L [0 i1,

B j’/T ) 12 (20)

To illustrate the wavefield extrapolation principles I will use the 2D version of the Rayleigh
integral of type II, i.e., equation (19). Wavefield extrapolation can be performed in space-
time, space-frequency or wavenumber-frequency. I will describe here space-frequency and
wavenumber-frequency approaches only.

Defining

ik
W(zs—2,Az,w) = ——% Ccos ¢H§2)(kr) (21)

we can write

1
P(z4,2i-1,w) = 5—7;/L W(zs — z,Az,w)P(z, 2, w)dz (22)
or
P(x)zi-—hw) = W(LTI,AZ, (.U) * P(m’zi,w) (23)
For the 3D case
& [1 4 5 s
Wi(za— 2,94 — Y, A2z,w) = Zd %jkr cos ¢ M. (24)
2m | jkr r
and
P(Q’I,’y, Zi—law) = W(Qf,y, szw) * P("Ea Y, Ziaw) (25)

Hence forward extrapolation in the space-frequency domain can be formulated in terms of
convolution along the spatial axes, z and y. If we consider a dipole at z = z, then the
response at depth level z = z;_; is given by W (z, — 25,y — ¥s, A2, w), so that W is called
the spatial impulse response or the spatial wavelet for the temporal frequency w. If the
velocity varies laterally, the spatial wavelet W (z, — =5, Y — s, A2, w) becomes space-variant,
that is W (2, Tr — Ts, Yr — Ys, Az,w), and the convolution is valid only if an average value
of the velocity can be used within the operator length. Generally, for space-variant discrete

situations and a finite operator length, a matrix formulation is used.
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If we consider the situation without lateral variations in thickness or velocity, then the
function W does not change along the spatial coordinates = and y so that the convolution
can be carried out by means of a multiplication in the w-k; domain

ﬁi-—l(kza kya Z2i—1, LU) = W(km‘a ky7 AZ, W)é(km, ky, Ziy (J)) (26)

where

— B j_}z_l 1+ jkr
W(kmky?AZaw) _‘F[ I ( jk’l"s

Jexp(—sir)] = exp(-y 5~ (2+K) 89) (20

W (kg, ky, Az, w) = exp(—jk,A2) (28)
F stands for Fourier transform and k, is the vertical component of the wavenumber.

This result can be also obtained from the Helmholtz equation. Substituting a solution like

p= p(ﬂ:, Y, Z) exp(~iwt) (29)

into the wave equation we obtain

82p 82p 8’2p

4+ —+k*p=0. 30

8x2+8y2+8z2+ p (30)
Fourier transformation with respect to 2 and y produces the one-dimensional Helmholtz
equation;

0*pP 2 2 2

W+(k —kx—ky)on (31)
whose solution is

P(kg, ky, 2,w) = A(ks, by, w) exp(£jk.|z — zi!) (32)

By taking z — z; the integration constant A; = P(kz, ky, z;,w) and

P(ky, ky, z,w) = P(kg, ky, 2, w) exp(Ljk;|z — zl) (33)

With the propagator W (z, v, i, 2i—1,w) it is possible to perform the forward extrapolation
of P from z;_; to z;. This operator can be applied recursively to go from any z; to any z;
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where z; > z;. In the same way an inverse extrapolator can be defined to go from z; to z;_;

or working recursively from any z; to z; where z; < z;.

Now, if we have a downward propagating source S*(x,y,w) at the surface and a series of
reflectivities R(z,y, zm,w),with m = 1, N, the wavefield P(z,y, 2,?) can be obtained as

N
P(z,y, 20, t) = FHUD(20w)*[>_ W™ (20, Zm, W) % R(2m, ) ¥ W (2, 20, w)] % ST (20, w)] (34)

m=1
where F~![] is the inverse Fourier Transform, and the notation has been simplified making

implicit that all terms are z,y dependent, D(z,y,zw) accounts for the properties of the
receivers and, in the simplest case D(z,y, zow) = 1.

If we reverse one of the operators, set it as block tridiagonal matrix and set the other oper-
ator as columns of a second matrix, the convolutions can be carried out by means of matrix
multiplication. To do this a matrix P(w) is built up for each frequency setting the shot
gathers as columns. In this way the rows contain the receiver gathers. To visualize this,
consider a 2D data set with different shots, each one with its corresponding shot gather.
Setting every shot gather behind the previous one, a 3 dimensional matrix is constructed as
P(t,z,, ;) where t is the time, . represents the coordinates of the receivers, and z, the co-
ordinates of the sources. Fourier transforming produces P(w, z,, ). An index permutation
gives P(z,, rs,w). With these matrices and the shifted operator Wz, 29, zmw) set as

W(—x, 20, ZmWs) f f
_ﬁ
0 W(——x +1, 20, Zmwi) 0 (35)
0 _0) . W(——az + N, 20, ZmWs;)

where all the elements are vectors, the convolution can be performed as a matrix multipli-
cation,
__>
W(m, 20, Zm, Wi) * ?(az, Zmy wi) = W (Z, 20, Zm, wi) P (2, 2, wi)- (36)

Hence it is possible to compute the response of the earth, frequency by frequency, with all

the sources.
N
P(z0,w) = D(20w)[ > W (20, Zm, )R (2, W)W (2, 20, w)]ST (20, ). (37)
m=1

Here all the terms are z,y dependent and

W+(zm7 20, U)) - W+(:EJ Y, Zmsy 205 U))



9 - WAVEFIELD EXTRAPOLATION 158

is the downward propagator from zp to 2z,
W (2m, 20,w) = W (2, Y, Zm, 20, W)
is the upward propagator from z, to zo,
P(z,w) =P(z,y, 2,w)

is the wavefield at z = z;. In the simplest 1D case (no z,y variation in the earth properties)
with sources along z it is possible to work in the k; — w domain
P(z0, ks, w) = D(zo,km,w).[z W™ (20, 2m, bz, w) R(2m, ko, )W (20, 20, bz, w))S (20, bz, w)
m

(38)
where all matrix multiplications have been replaced by scalar multiplication.

Let us simplify the problem taking D = I, that is one receiver at every z position and
calling
T(zO) - Z W~ (.CC, Y, 20, Zm, CU)R(ZE, Y Zm; CU)W+(.’L', Y, Zms 20, LU), (39)

T(zy) is an operator which takes the downward wavefield PT at level zy, downward propa-
gates it until z = z,,, computes the reflected upward wavefield P~ at z = 2z, and propagates
it upward until z = z, and finally adds all the wave fields coming from all layers m. In the
absence of multiples the wavefield at z = 2 will be

P (z) = T(zo)S+ (40)
where St is the downward field from the source.

Multiples can be included in this formulation because these are generated by feed back of
previously generated waves. An expression which includes surface related multiples, i.e.,
all multiple reflections that have been reflected at least once from the free surface can be
obtained as follows. If there is a surface with reflection coefficient 7o the upward wavefield
P~ () will produce a downward field

P+(Zo) = ~—7"0:9_ (Z()) (41)

The total downward field will be
Pi () = ST — 1P~ (%) (42)

mc

and the response of the earth will be

P (20) = T(20)Pc(20) (43)
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P~ (20) = T(20)[ST — 70P ™ (20)] (44)

which is a recursive filter, whose present output depends on past outputs.
P~ (2) + 70T T(20)P (20) = T(20)S* (45)
Solving for P~ (2g) the formulation
P~ (2) = [T+ 70T (20)] " T(2)S* (46)

generates all the free surface multiples. Expanding

0]

70T ()™ = 3 (-70)" " o) (47)
P—(Zo) Zo + Z 7'() nTn Z())S (48)

where taking more terms produces higher order surface multiples. To include all possible
multiples, free surface as well as internal, we have to extend the recursive primary modeling
scheme further by adding, during each upward continuation step, all multiples related to the
current surface. For example, if we have arrived at the level 2,4, with an upward travelling
reflected wavefield P~ (2y,41) which includes all multiples, then

P~ (2m) = W (2m, Zm+1)[R+ (Zm+1) + P“(zm+1)]W+(zm+1, Zm) (49)

where P~ (z,) represents the total upward travelling response from depth level z > 2z,
assuming zero reflectivity at z = zp. To include all multiples associated with z = z,, we
need another step to include the feedback of P~ (zn) R™(2m).

Proi(zm) = [I - P~ (zm) R™ (Zm)]—lp—(zm) (50)

or to reduce instability,

o

Pri(2m) = P (2m) + D[R (2m). P~ (2m)]"P" () (51)

n=1

where only some of the infinity terms are calculated. In conclusion, we start at maximum
depth and continue up to the surface according to the previous expressions (49) and (50).
When we arrive at the surface, we have created the total response, i.e., primaries and all
possible multiple reflections. In the last step the source matrix and the detector matrix can
be included.
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Figure 1: Forward modeling in w-k; domain: One layer and halfspace. (a) Primary, (b)
primary-+multiple, (c) propagator k; — w, (d) propagator = — ?.

2.1 Example: single source. Forward modeling in kg-w

Figure 1 and 2 show an example of forward modeling in the w-k, domain, with a source
located at the centre of the line and a simple reflectivity independent of frequency and
incident angle. A simple two-layer and halfspace 1.D model is computed. Figure la shows
the first step, the primary reflected at surface 2. The next step, Figure 1b, is to add
the multiples produced by the reflection from surface 1. Figure 1c shows the propagator
W (k;,w), and Figure 1d presents W (z,t). Evanescent fields have been avoided setting zero
the amplitude of the propagator for angles greater than critical, i.e. those with k; > k.

Another consideration regarding the obliquity factor k, must be implemented. Given an
offset interval dz the Nyquist spatial wavenumber ky = Z. This means that to avoid
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Figure 2: Forward modeling in w-k, domain: One layer and halfspace. (a) Primary, (b)
primary+multiple, (c) propagator k; — w, (d) propagator x — .

aliasing the maximum incidence angle must be k; = ksin ¢ < ky or

w . m
Esmqﬁ < (52)

For wy = 2%%, to avoid aliasing the maximum angle is given by

dt
i max 5L 3
SN Gmare < ——C (53)
On the plane k; — w, all points (wave fronts) with
w2
k, = (-5> — k2 < kCOS Gmax. (54)

must, be zeroed.
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(b) 1 layer and halfspace
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Figure 3: Forward modeling in w-z domain: Three layers and halfspace. (a) propagator

(z — t) for the upper layer, (b) primary from layer 3, (c) primary from layers 3 and 2, (d)

primaries from layer 3, 2 and 1.

For the Nyquist temporal frequency w = 2rf = 7 this condition is satisfied automatically

for the maximum k, on the plane, but for lower frequencies a filter is applied.

Figure 2 shows the same plots for the second step, i.e., after adding layer 1. Figure 2a

shows the primary reflected at surface 1 plus primary and multiples from below (internal

multiples). In Figure 2b the multiples produced by the reflection on the free surface have

been added. (c) shows the propagator W (ks,w), and Figure 2d W (z,t). If more layers are

present the process proceeds in the same manner until the surface.
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Figure 4: Forward modeling with multiples in w-z domain: Three layers and halfspace. (a)
propagator (z — t) for the upper layer, (b) layer 3, (c) layers 3 and 2, (d) layers 3, 2 and 1.

2.2 Example: Single source. Forward modeling in z-w

Figure 3 shows forward modeling in the z-w domain without multiples, and Figure 4 with
multiples. The propagator is defined as

W(zs—z,Az,w) = ——% cos pHP (kr) (55)

and the simplified version for kr >> 1 (far field condition) is used

, ik
Wi(za — 3, Az,w) =4 —;% cos ¢@_(_T_Z__Q (56)

Figure 3a shows the propagator for the upper layer in the £ —t domain, and it represents the
wavefield in a halfspace at level (z, z) when the impulsive source is at (zA,2). When we add
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Figure 5: Forward modeling for multiple sources in w-z domain: three layers and halfspace.
(a) Propagator (x —t) for the upper layer, (b) layer 3 ,(c) layers 3 and 2 (d)layer 3,2 and 1.

a layer to the halfspace, the primary wavefield consists of the primary reflection between the
layer and halfspace Figure 3b but the total wavefield has the primary and all its multiples
(Figure 4b).

Figure 3c-d show the primaries with 2 and 3 layers respectively. In Figure 4c-d the multiples
have been added. The multiples are stronger for the surface because the surface reflection
coefficient is equal to —1.

2.3 Example: Multiple sources. Forward modeling in z-w

Here there is an example with a formulation for many simultaneous sources. Only one

source per shot is considered but all the shot gathers are computed simultaneously and the
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Figure 6: Source gathers without multiples: three layers and halfspace. Four different source
positions.

formulation is able to handle the case of simultaneous sources. Using matrix multiplication
to perform spatial convolution, a full set of shot records and detector gathers is computed,
resulting in a 3_D matrix with = 24,y = 75, and z = w. Shot gathers are stored as rows
and detector gathers as columns (frequencies are in the third dimension). First an example
with only primaries is shown in Figure 5 and 6, then the same model with the inclusion of
first and second order primaries is shown in Figure 7 and 8. Figure 5a shows the propagator
W (z,t) for the upper layer, Figure 5b presents a shot gather for a shot at the centre of the
line, and Figure 5c-d show the same for two and three layers respectively. Figure 6a-c show
four shot gathers for different shots from the left to the right side of the line. Figure 7 and
8 are the same but with first and second order multiples added as is explained below.

The forward problem is implemented as follows. A set of matrices is defined for the sources,
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(a) propagator (b) 1 layer and halfspace
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Figure 7: Forward modeling with multiples for multiple sources in w-z domain: three layers
and halfspace. (a) Propagator (z —t), (b) layer 3 ,(c) layers 3 and 2 (d)layer 3,2 and 1.

the reflectivity and the propagator

S(w,zs) = FFT(S(t,zs)) (57)
R (2, 75) = Bmy (2, z5) (58)
jk exp(—ikr)

W(zs—z,A2,w) = o cos o) (59)

where z, are receiver positions and z are source positions. The wavefield is computed for
every frequency w;. Hence, a loop is required for frequencies and another for layers. The
wavefield is given by

P_(zm) = W_(Zmd Zm+1)[R+ (Zm+1) -+ Pt;_ot(zm+1)]'w+(zm+l> Zm) (60)
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Figure 8: Source gathers with multiples: three layers and halfspace. Four different source
positions.

and the multiples are included with
Piog(zm) = [I- R—(Zm)-P—(Zm)]—IP(Zm) (61)

Because of the inherent instability of the process of deconvolution, special care must be
taken at this step. A band limited version of the multiples is evaluated, with only those
frequencies that yield a reasonable condition number for the matrix I - R (zm). P (2m)]
Also the diagonal of the matrix is increased to decrease the condition number, a procedure
that decreases the amplitude of the multiples. Because of this instability I have calculated
only first and second order multiples. Given the finite extension of the record only a very
small number of multiples will appear.

The wavefield results in a 3D matrix with z = z,,y = 74 and z = w. Considering one
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frequency w, every row represents a shot gather and every column represents a detector
gather. To obtain any source or detector record an index permutation is done

P(w,,, zs) = Permute(P(z,, T5,w)). (62)

The wavefield is multiplied by the source in the frequency domain and the inverse Fourier
transform is applied to obtain the synthetic data,

P(t,z,, zs) = FP(w, 2y, 75)-S(w, zs). (63)

3 Inversion

Inversion of real seismic data is a very complicated task, because of the under determinated
nature of the problem and inherent instability. The waves propagate inside the earth and
each contrast in the physical properties of the medium produces a complicate pattern of
primaries and multiples. Information about all physical parameters of the earth that affect
the waves is in the data, but to extract this information we need to know the details of
the physical phenomenon. In theory, given the seismic response at the surface, information
about density and velocity in the subsurface could be computed. Geophysicist try to develop
the information and the most probable result is presented in terms of zero-offset reflectivity.
An important step for performing a complete inversion is to understand that multiples are
part of the seismic experiment. Usually, they are considered coherent noise and as such, they
are attenuated or eliminated as much as possible. Hence, inverse modeling requires three
steps:

1- Inverse wavefield extrapolation.
2- Reflectivity estimation.

3- Multiple removal.

Inverse wavefield extrapolator: The propagation effects in a layer can be quantified by
spatial convolution for each temporal frequency component with an operator W:

Downward continuation:
P+($a y) z’ma LL)) = W+(SC, y’ Azm7w) * P+(‘T’ y? zm—la (.U) (64)
Upward continuation:

P‘(xay,zm—hw) = W—(xay?Azm7w) * P'(m,y,zm,w) (65)
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To compensate the propagation effects in layer (zm,zm-1) we need an operator for each
frequency such that

Downward continuation:

<P+(:v, Y, zm_l,w)> = ¥ (z,y, Azp,w) * PT(z,y, 2m,w) (66)
Upward continuation:

<P_ (Z, Y, Zm, w)> = F~(z,y, Azm,w) * P7(z,y, 2m-1,w) (67)

F*(z,y, Azy,w) are called inverse wavefield extrapolators. Application involves a deconvo-
lution process along the spatial axes for each frequency component. F and W are inverse
operators of each other

W*(z,y, Azm,w) * F7(2,y, Azm, w) = 6(2)6(y) (68)
In situations with lateral variations a matrix formulation is necessary,
W (2m, 2m-1) * F 7 (2m-1, 2m) = 1, (69)

F* (2, 2m-1) * W (Zm—1,2m) = 1, (70)

In the w-k, domain the relation is expressed as

W= (kg, ky, Az, w) FT (kg, ky, Az,w) = 1. (71)

A simple calculation of F' would be,
F¥(kg, ky, Az,w) = 1/W=(kg, ky, Az, w) (72)

However this calculation is unstable, because it defines an exponentially increasing operator
which is unacceptable in practical situations.

Several alternatives are possible:

Band limited version:

F=A/W (73)

where A represents a spatial lowpass amplitude weighting function. This could be determined
for example by the maximum dip angle.
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Least squares inversion

. W
N2+ [W]?
similar to the two sided least squares temporal deconvolution.
Matched filter
F=wW* (75)

Reflectivity: As was explained before the forward model for the prestack data is obtained
as

P~ (20) = D(20).>_ W (2, Zm)R(2m) W (2, 20)] P (20) (76)
Hence, the response for a single depth level z = zp, can be written as

P_ (20) = W (20, Zm)R(2m) - W (2m, 20) (77)

To obtain information about the reflectivity R(zm) the response from a single layer must be
inverted:

R (zm) = F (zm, 20)P o (20)-F~ (20, 2m) (78)

Removing all propagation effects between depth levels zp and z, with inverse wavefield
extrapolation, the events reflected at the depth level z = z,, are extrapolated to the surface,
i. e., t =0. Hence after inverse wave field extrapolation to depth level z, the data at ¢ = 0
are integrated on frequency to obtain the reflectivity,

Ry (20) = %Re / T B (2, 2m) P (2 ) B (2 70) )0 (79)

Wmin

Multiple Removal To perform the inversion, it is necessary to remove the multiples from
the wavefield P(z,) every time we eliminate one layer from the surface wavefield. This
process may be unstable because it involves deconvolution of a band limited wavefield.

Tt was stated before that the multiples are generated by a feed back process
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Piot(zm) = [T = R(2m)P (2m)] P (2m) (80)

then

P(Zm) = [I + R(Zm)Ptot(zm)]_lptot(Zm) (81)

Thus, starting with the surface data, it is possible to remove all the surface related multiples.
Because the reflection coefficient for the surface is approximately equal to -1 these multiples
are the strongest in the data. To remove internal multiples we perform inverse wavefield
extrapolation, estimate the reflectivity and then, as before, we can remove all the multiples
associated with that surface.

A computation of [I — R(zm)-Ptot(2m)] " results in instability if strong multiples are present
(Verschuur et al., 1992). To understand this, the inverse can be developed as a series

P(zm) = Piot(zm) — 2("1)71_1[Pt_ot(zm)R(zm)]nPgot(zm) (82)

The inverse implies an infinite number of terms. In the presence of strong multiple reflections,
the series expansion converges very slowly, and straightforward inversion is unstable. Taking
only a limited number of terms into account stabilizes the inversion. The number of terms
that should be taken into account depends on the highest order surface related multiples
present in the data because each additional term taken into account results in eliminating
surface related multiples of one order higher.

In Berkhout and Verschuur (1997), the ITR filter from equation (82), is performed as a

recursive filter

P™ (2,) = Piot(2m) — F™ (2m) Pot(2m) (83)
Fiot(2m) = pY) (2m)R(2m) (84)

P(O)(zm) = Piot(2m) (85)
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(b) Multiples from surface 0 removed
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Figure 9: Inverse modeling in w-z domain: two layers. (a) Full wavefield, (b) surface multi-
ples removed, (c) layer 1 removed, (d) internal multiples removed.

3.1 Example: inversion

In Figure 9 the basic steps of inverse wavefield extrapolation are presented. Figure 9a presents
the initial total wavefield (primaries and multiples) obtained with a forward modeling. Figure
9b shows the wavefield after removal of the free surface. This operation has removed all free-
surface-related multiples and only primaries from surface 1 and 2 and internal multiples are
present. The following step is the downward continuation of P (z0) to P(z1), (figured-c) that
is the wavefield after removing the first layer, remaining only the second primary and internal
multiples. This step moves the primary reflection at surface 1 to the surface at z = 0. The
reflection coefficient here could be obtained by imaging but to keep the example simple I
have taken the values used in the forward model instead. Then, the reflection coefficient is
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subtracted and the wavefield is ready for the next step, the removal of internal multiples
reflected at the surface 1. Finally, figure 9d must be the wavefield with all internal multiples
removed and only the second primary must be present (a multiple still remains because the
inversion was not perfect). The last step is the downward continuation of the wavefield from
z = z; until z = z,, obtaining P(2;) and imaging to get the reflection coefficient at surface
2.

3.2 Surface multiple attenuation

According Verschuur (1992), the historical development of the method of multiple attenua-
tion starts with Anstey and Newman (1967) who observed that by means of the autocon-
volution of a trace, primary events were transformed into multiples. Riley and Claerbout
(1976) used this idea in the so called Noah’s deconvolution. Kennet (1979) described an
inversion scheme in the w-k, domain. Berkhout (1982) redefined the multiple problem for
laterally varying media by using a wave theory-based matrix formulation. Iterative versions
of multiple attenuation are in Verschuur et. al. (1989, 1992) and Wapenaar et al. (1990).
Another approach for attenuating free surface and internal multiples is based on a point
scatterer model (see Weglein et al., 1997), but this approach will not be discuss here.

Even when inversion can in theory eliminate all the multiples as part of the inversion itself,
the process is very complicated so that a common approach is to predict the multiples
applying some iterative method, starting from some approximation of the multiple free data.
The predicted multiples are subtracted from the initial data to attenuate the multiples.

Surface multiple attenuation (Dragoset and Jericevic, 1998) is based on the concept that
every surface multiple consists of segments that, from a surface perspective, are primary
events. The surface multiple attenuation algorithm manipulates and combines the primary
events in a seismic data set so as to predict the surface multiple wavefield and then uses that
prediction to cancel the actual surface multiple. Because the method does not depend on
move out discrimination it does not affect primaries. Multiples can be considered primary
reflections whose sources are other primary events (Jakubowicz, 1998). Hence, a multiple
(response of the earth system) can be obtained as the convolution of a primary (source) with
another primary (impulse response of the earth system).

The task of combining primary events to predict multiples (Dragoset and Jericevic, 1998)
is similar to the diffraction aperture problem of classical optics and, as such, can be solved
by means of the Kirchhoff integral. Multiples can be predicted according to the Kirchhoff
integral with the following formula:
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m(s,r,t) = —\/EFM{(l—z‘)\/Z‘”; [ dnFiuVip(a,1)
Fiae (V1 = (BaV/0) Farsry (Fiosol Vi (z, o))} (6)

Where F stands for Fourier transformation, with the change of variable indicated by the
subscript and V is the wave velocity. A is the surface aperture and is equivalent to a
cable length. The operation implied by this formula is as follows. For every x location
in the aperture, temporally convolve a trace from a common shot record p,(z,t) with the
corresponding trace from a common receiver record p-(z,t); then stack the convolution result
and multiply by —1 (to account for the surface reflection coefficient). The integral over the
variable z accomplishes the stack, while the convolution is accomplished by multiplication
in the frequency domain. Various other pieces of the equation are simply to ensure that the
operation on 2-D data produces a result that correctly honors the physics of 3-D sound wave
propagation from point sources. The result of equation 86, m(s,r,t) is a single trace that
contains a predicted suite of multiples. The whole procedure can be thought of as a 2-D
generalization of the idea of predicting multiples by convolution. To predict all of the first
order surface multiple wavefield, equation 1 must be computed once for each trace in the
data set using

Here, M represents the entire first order surface multiple wavefield, P represents the primary
wavefield, and Oy, represents the Kirchhoff operation.

Higher order multiples M; are obtained as (see Dragoset and Jericevic, 1998)

M, = POy M;_;. (88)

Thus, if P is known any desired order of multiples can be generated using the same scheme.
The entire surface-multiple wavefield M is given by M; + My + ... + Mn, where n is the
highest order surface multiple that can appear in a given data set. The entire recorded
wavefield consists of

D:P+M1+M2+...+Mn (89)

or using the recursive formulation for the multiples
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D = P(1+ Oy(D — M,)). (90)

If it is possible to compute the inverse of the bracketed expression then P can be obtained
from the data

P = D(1+ O(D — M,))™". (91)

To compensate for the source wavelet contained in predicted multiples, we have to perform

a convolution with the inverse of the wavelet w, written as w™!

P =D(1+w™ 0D — My))™" (92)

To implement Equation 86, the convolution is performed by means of matrix multiplication,
using the following definitions

m(s,7,t) = VtF,_ . {m(s,r,w)} (93)
m(s,r,w) = —Y_ ps(z,w)p(z,w) (94)
ps(xa w) = Ft—nu[\/ips(xa t)] (95)

pr(z,t) = (1 — i)dI\/;%szex A1 (k:V> Foosks {Ft_w[\/%pr(x,t)]} (96)

For each particular w, s and r, the product of matrices ps(z,w) and p,(z,w) produces one
element in the matrix m(s,r,w).

The physical meaning of the Kirchhoff’s integral is the following. The primary source located
at a particular posicion produces waves that, after reflecting at the subsurface, reachs the
surface and become secondary sources. First order surface multiples are primaries originated
for these secondary sources. Hence, they can be calculated by adding the temporal convolu-
tion of sources and impulse response functions of the earth for every surface location. Let us
consider a shot gather in the z — w domain, corresponding to a shot at position z,,. In our

formulation, a shot gather for w; when the source is at z,p is a row of the three dimensional
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matrix storing the wavefield P(xXs, X, w;). Every element of this row vector contains the sec-
ondary source at position z,,, when the source is at ;. A receiver gather at z,,, is given by
one column of the matrix P (X, Xy, w;). Every element of this column vector, P(Zrp, Trm, wi)
contains the transfer function of the earth at the position z,,, due to a source located at .
Hence, the frequency w; of the first order multiple at position Zym, when the source is at x4
is given by

ma (mspa Zrm; wi) = Z P(xsp, Trp, wi)P(xrp, Trm ;s wi) (97)
TP
Note that the calculation depends on destructive and constructive interference to produce
the correct response. This explain why boundary effects appears at the end of the synthetic
traces and also the problem due to missed traces.

3.3 Example

A very simple example is presented in fig 10. Figure 10a, shows a single synthetic shot record
with two primaries, one at 0.27s (at zero offset), and another at 0.77s. The forward model
was computed in the z-w domain from a two layer and halfspace model. Applying equation
(86) to the data (all shot and receiver gathers included) produces all first order surface
multiples. The matrix multiplication of the data with themselves (with the definitions given
above to honor the wave equation) reproduces the first order multiple for every shot and
detector. There are some boundary effects, produced by the finite aperture of the model.
The waves generated by the secondary sources at the end of the gathers are incompletely
cancelled at one side by another secondary source, but not by the other side.

Figure 10b displays the first order multiple. The first event at 0.54s. is the multiple travelling
twice in the upper layer. At 1.03s. appears a multiple that has travelled twice in the upper
layer and once in the second layer. At 1.54s. the wave that has travelled twice all the way
from the surface to the second interface has arrived. No other surface multiple exist, but a
new computation of the product will produce the second order multiples.

Figure 1la presents one synthetic shot gather from a two layer model, upper layer with
a velocity of 2000m/s and thickness of 200m, second layer with velocity of 3000m/s and
thickness of 350m. The primaries are at 0.2 s and 0.5 sec. First order surface multiples and
first and second order internal multiples are in the data as follows.

P, at 0.2s
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Figure 10: (a) Primaries (two layers and halfspace). (b) First order surface multiples.

P, at 0.4s
Pj5 at 0.5s
P15 at 0.7s
Pios at 0.8s
Pji9o at 1.0s
Pii999 at 1.3s
Pii9999 at 1.6s

where indexes represent the number of times that the wave has travelled through the layer
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Figure 11: Surface multiple attenuation. (a) Primaries, first order surface multiples and

internal multiples. (b) Surface multiples attenuated.

1 or 2. Figure 11b shows the wavefield after attenuation of the first order surface multiples.

The following reflections have been attenuated,

Pu at 0.4s
P112 at 0.7s

P]_122 at 1.0s.

Primaries and internal multiples have not been altered
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3.4 Summary

The method of wavefield extrapolation to calculate the response of the earth is explained
and implemented. The forward model contains all shot and receiver gathers, and multiples
can be included in the model. The model can be calculated in the frequency-space domain
or the frequency wavenumber domain. Another version in the time space domain is possible
but not considered here.

Essential to the formulation is the concept of the propagator, that can be evaluated for the
earth model either in frequency-space or frequency-wavenumber. This operator extrapolates
the wavefield to produce the surface data with all the reflections from the subsurface. The
model is started at the bottom halfspace and all the internal reflections are added to the
wavefield in its way to the surface. The source is incorporated at the end. Examples of
forward and inverse models are shown. Finally the wavefields computed are used to exemplify

the method of surface multiple attenuation.

Still some modifications are required in the codes to produce better results and, in particular,
to apply the method to real data, but the presented examples show how all source and receiver
gathers can be modeled, and multiples predicted and attenuated from the data.

4 References

Anstey. N. A., and Newman, P., 1967, Part I: the sectional auto-correlogram and Part II:
the sectional retro-correlogram: Geophys. Prosp., 14, 391-426.

Berkhout, A. J., 1982, Seismic migration: imaging of acoustic energy by wavefield extrapo-
lation: 2nd Ed.: Elsevier Science Publ. Co., Inc.

Berkhout A. J. and Verschuur, D. J., Berkhout A. J. and Verschuur, D. J., 1997, Esti-
mation of multiple scattering by iterative inversion, Part I: Theoretical considerations:
Geophysics, 62, 1586-1595.

Dragoset, W. H., 1998, Some remarks on surface multiple attenuation: Geophysics, 63, 2,
772-789.

Jakubowicz H., 1998, Wave equation prediction and removal of interbed multiples: 68th
Ann. Internat. Mtg Soc. Explo. Geophys., Expanded Abstracts, 1527-1530.



9 - WAVEFIELD EXTRAPOLATION 180

Kennet, B. L. N. 1979, The suppression of surface multiples on seismic records: Geophys.
Prosp., 27, 584-600.

Riley D. and Jon F. Claerbout, 1976, 2-D Multiple Reflection: Geophysics, 41, 4.

Verschuur, D. J., Berkhout A. J., and Wapenaar, C. P. A, 1992, Adaptive surface-related
multiple elimination: Geophysics, 57, 9, 1166-1177.

Verschuur, D. J., Berkhout A. J., and Wapenaar, C. P. A, 1989, Wavelet estimation by
prestack multiple elimination: 59th Ann. Internat. Mtg Soc. Explo. Geophys., Expanded
Abstracts, 1129-1132.

Wapenaar, C. P. A, Herrman, P., Verschuur, D. J., Berkhout A. J., and 1990, Decomposition
of multicomponent data into primary P- and S- wave responses: Geophys. Prosp., 38,
633-661.

Weglein A. B., Gasparotto, F. A., Carvhalo, P. M., and Stolt, R. H., 1997, An inverse
scattering series method for attenuating multiples in seismic reflection data: Geophysics,
62, 1975-1989.



