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Removal of surface-related wave phenomena—The marine case

R. G. van Borselen*, J. T. Fokkema*, and P. M. van den Berg#

ABSTRACT

Removal of the effects of the free surface from seismic
reflection data is an essential preprocessing step before
prestack migration. The problem can be formulated by
means of Rayleigh’s reciprocity theorem which leads to
an integral equation of the second kind for the desired
pressure field that does not include these free-surface
effects. This integral equation can be solved numerically,
both in the spatial domain and in the double Radon
domain. Solving the integral equation in the double
Radon domain has the advantage of reducing the com-
putation time significantly since the kernel of the inte-
gral equation becomes dominant diagonally. Two meth-
ods are proposed to solve the integral equation: direct
matrix inversion and a recursive subtraction of the
free-surface multiples using a Neumann series. Both
methods have been developed and tested on a synthetic
data set, which was computed with the help of an
independent forward-modeling scheme.

INTRODUCTION

Surface-related multiples are a classic problem in marine
seismic data processing. The problem is especially severe in
areas where the water bottom has a high velocity contrast: the
multiples tend to decay slowly and, because the energy is
trapped in the water layer, the effect of the free surface
degrades the quality of the seismogram significantly. Several
methods have been developed to attack the problem of the free
surface, such as predictive deconvolution that makes use of the
fact that the multiples appear in the data with certain period-
icity (Robinson and Treitel, 1980), and methods based on
moveout, which make use of the assumption that the surface-
related multiples are low-velocity events with respect to the
primaries. These methods are often ineffective, because of the
assumptions that are inherent in conventional multiple atten-

uation schemes, which is the reason that new attention has
been paid to the problem of the free surface.

An effective method to remove the effects of the free surface
should require no a priori information, neither structural nor
material, about the subsurface geology, and must leave any
relevant subsurface information present in the data unaffected.
Verschuur et al. (1992) describe a method that is based on
wave theory. They derive an expression for the multiple
contaminated upgoing pressure wavefield as a function of the
multiple free upgoing pressure wavefield as the subsurface
impulse response. The removal of the surface-related multiples
is performed by calculating the inverse operator such that an
expression for the upgoing wavefield excluding the free-surface
effects is obtained. In addition, an estimation of the wavelet is
made based on some minimum energy criterion. Carvalho and
Weglein (1992) propose a similar method based on an inverse
scattering series solution method that removes the surface-
related multiples without the need to separate the wavefield
into its up- and downgoing constituents. In the scattering
series, each term in the series removes a higher-order surface
multiple.

In this paper, we present a method to remove the surface-
related wave phenomena that is based on Rayleigh’s reciproc-
ity theorem, which formulates the interaction of two noniden-
tical states in a domain. One state is identified with the actual
situation where the free surface is present, while the other state
is the desired one that differs only from the actual state by the
absence of the free surface. Using Rayleigh’s reciprocity
theorem, an integral equation can be derived in which the
desired pressure wavefield in an unbounded medium, where no
free-surface effects are present, is expressed as a function of
the actual measured pressure in a bounded medium that
incorporates the free-surface effects. The integral equation can
be solved numerically by direct matrix inversion or iteratively
by a Neumann series. Using the integral formulation, we prove
that the Neumann iteration series is convergent for any
geology in the time domain and can therefore be considered as
a legitimate alternative to solve the integral equation. Further-
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more, the integral formulation enables us to transform the
integral equation to the double Radon domain. The main
advantage of solving the integral equation in the double Radon
domain is that the computation time can be reduced signifi-
cantly since the kernel of the integral equation becomes
diagonally dominant.

RAYLEIGH'S RECIPROCITY THEOREM

We start the analysis with the acoustic equations in the
space-frequency domain:

9k P(X) + _Jwp(x)P(x) = Fr(x), (1)
9k Vi(x) +_jwk(x) p(x) = §(x), (2)
in which

p(x) = acoustic pressure [Pa],

vk (x) = particle velocity [m s ],

p(X) = volume density of mass [kg m~?],

k(x) = compressibility [Pa~!],

g(x) = volume density of volume injection rate [s 1],
fx(x) = volume density of volume force [N m”3,

We have used a temporal Fourier transformation with time
factor exp (jw® to transform the time-domain acoustic field
quantities {p, v4} to the frequency-domain counterparts
{p. v}. Further, x = ijx; + i,% + iyx; denotes the 3-D
position vector in the right-handed orthogonal Cartesian ref-
erence frame with origin O.

A reciprocity relation interrelates the field quantities that
are associated with two nonidentical physical states that could
occur in the same time-invariant domain in space. We consider
a bounded domain D with a boundary surface 3D, The acoustic
state in a domain D is a composition of three states:

1) the field state, described by g and v,;
2) the material state, described bz p and k; and
3) the source state, described by 7 and 4.

The two physical states are distinguished by superscripts A and
B. The global form of the reciprocity relation, applied to a

domain D with boundary 80, that interrelates the two states A
and B is given by

aD

FIG. 1. Domain of application for the reciprocity theorem.

J. (P9 = pBig)v A
x€aD
=f Le(p? = p0gvf — ju(k 8 k) pAp8) dv
x€D

+f (Fv + q8p* — FEof — g#p® av.
xED

in which v denotes the unit vector normal to 6D pointing away
from D (see Figure 1). In the following section, the two states
are defined that are to be interrelated to remove the effect of
the free surface.

DEFINITION OF THE TWO STATES

In the marine case, we have the situation shown in F igure 2.
The domain of interest is the half-space D' = (x € R3| — = <
X1, X3 < @, 0 < x5 < ), which can be divided into the water
layer D,, and the earth geology D, with boundary 9D,. The
material constants in D, are {p,. k,}, and the material
constants in D, are {p,, k,}. State A is taken as the (known)
actual marine configuration. An impulsive point source located
at position x° below the water surface X3 = 0 generates
the acoustic waves. Let this wavefield be denoted as
{(p*, ofy = {5, v} (x/x5). The wave speed in the water layer
is ¢. The spectrum of volume injection is §° = G%(w) and is
assumed to be known. The volume density of body force is set
to zero. The seismic response is measured by point receivers at
position x”. In Figure 2, X3 i, denotes the top of the geology.
In state B, the desired state, the water layer extends to X 3
— (see Figure 3). In this case, the plane defined by X =0is
Just an artificial boundary. We choose a point source with an
identical spectrum to the one in state A located at the receiver

. . v,
i L3} x3=0 t

'//T///;///////////////'////77.

i3

receiver

FiG. 2. The actual marine configuration—State A.
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position x® (see Table 1). This wavefield is denoted as
(P8 o8y = {p% v81(xx®). It is noted that P(xR|x5) indicates
the pressure wavefield measured at receiver position x* due to
a source located at position x 5.

DERIVATION OF THE INTEGRAL EQUATION

With the states mentioned above, the reciprocity theorem is
applied to domain D,, U Dy, enclosed by the boundary at the
water surface x; = 0 and a semi-infinite sphere S, of radius A
with its center at the origin O, and where the limit A 3 o is
considered (see Figure 4). We then arrive at

f PUx1. %z, 0x®)03(xy, Xz, 0|x5) dA
(X1,X2)ER?

= g°p(x"x%) — ¢5pIxIxR),  (4)

where we have taken into account that the pressure field of the
actual situation vanishes at x; = 0. The contribution of the
boundary integral over the semi-sphere is also zero. This can
be seen as follows: It can always be assumed that outside some
sphere of bounded radius the fluid is homogeneous with the
material constants {p,, k,} (see Figure 4). Taking the acoustic
wavefield in both states to be causally related to the action of
their sources, for large A we can use the far-field approxima-
tions of the radiated fields on S,. As a consequence, the
contribution of the surface integration over S, vanishes when
A 3 «. Equation (4) is an integral equation for the desired
pressure wavefield p¢.

For the acoustic pressure, we define the 2-D Fourier trans-
form pair of the Radon type with respect to the horizontal
receiver coordinates, given by

i3 receiver

Fic. 3. The desired marine configuration—State B,

P(pr. Pa. X3|x%) = FROp(xy, Xy, x3]x5)}

=f Pxy1, Xz, x3]x5)
(X1,X2)ER?

X exp (Jop1x1 + jop,x;) dA (5)

and

PUx, Xa, x3|x5) = FRUp(py, py. x3)x5)}

-(=)
“\2w

(

X exp (—jwp1X| — jopyXx,) dA; (6)

and the 2-D Fourier transform pair of the Radon type with
respect to the horizontal source coordinates, given by

P(p1. P2, X3]x)
Pr.p2)ER?

ﬁ(x’ﬂpl,pz. x3) = F{p(xRx;, x,, X3)}

=f p(le)(l,Xzyxa)
(x1,X2)ER?

X exp (—jop Xy — jopyx,;) dA (7)

and

PxRxy, xa. x3) = FE{p(xRpy, s, x3)}

)2
= (E) f P(xRp1. pa, x3)
(p1,p2)ER?

Table 1. Reciprocity between the actual wavefield and the
desired wavefield.

State A

State B

Field state {0, v} (x|x5, w) (0% v7) (xix®, w)

Material state {pw. Ky} in D,

{pw. Ky} in D, .
{pg Kg} in D,

{pg, Kg} in Dg

{5 @3 - x%), 0} {¢5(w)sx — xR, 0}

Domain D, U D,

Source state

x3=0 ¢
77 7777777777777 777777 77T T TR

w

%g
Dz Vi

Fi16. 4. Configuration for the derivation of the integral
equation.
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X exp (Jwpi X1 +_jwpyx;) dA; 8)

where the horizontal slownesses are described by p; and p,.
Similar definitions apply for the Fourier transforms of the
particle velocity v,.

Application of these transforms to the field quantities in the
left-hand side of equation (4) leads to

o\ 2
(ﬁ) f PUxp1. p2. 0)V3(py1. pa. 0x5) dA
(P1.p2)ER?

= ¢°p(x %) — ¢°p%xPx).  (9)
Note that we applied physical reciprocity in order to inter-
change the horizontal source and receiver dependences of the
desired pressure wavefield. This follows directly from the
reciprocity relation [see equation (3)] taking for states A and B
the desired state with interchanged source and receiver posi-
tions. In the next section, an expression is derived for the

particle velocity vy in terms of the measured pressure wave-
field.

AUXILIARY RELATION FOR THE PARTICLE VELOCITY

In the preceding section, an integral equation was derived
for the desired pressure wavefield. In this integral equation
[see equation (9)], the particle velocity of the actual state
occurs. In this section, an expression is derived for the velocity
field in terms of the measured pressure wavefield.

We start with the application of the reciprocity theorem to
domain O, definedas ' = (x € R¥| — = < X, 4y < 2,0 <
x3 < xf). State A is the actual field. State B is an auxiliary
source-free wavefield with a pressure field that is set to zero at
level x3 = x§ (see Table 2) by taking P, (x) = exp (jwp, 4, +
JopPyXy) sin (ol (xf — X)), in which

1 1/2
Fw=(p—p%—p§) (10)

denotes the vertical slowness. Reciprocity between the two
states yields

Table 2. Reciprocity between the actual wavefield and an
auxiliary source-free wavefield.

State A State B
. PU S — 0
Field state (P vi(xlx>, w) 1, — P,(x)
JOpy
Material state {pw Ky} {Pw. ku}

Source state {6598 (x — x5, 0} {0, 0}

Domain D' = (x € R¥| — = < x, by < 2,0 < 4y < xF)

f exp (JwpiXx; + jopyx,)
(x1,x2)ER?

X sin (oI yxv3(xy, Xz, 0)x5) dA

+ f exp (Jwpy Xy + jopox;)
(X1, x2)ER?
xr—wp(xl Xa., x51x5) dA
Jow T TET

[ =@5P(x%), 0< x5 <xf "
— o X§<X§<X3,m/‘n' an
Using the definitions of the Radon transforms, we directly

obtain the relation

v3(p1, p2. 0x5) =Ty p(p1. pz. x§x5)
g sin (lwxd)  Jjpwg®
Pw(xs) s R
_ m, 0<)(3<X3. (12)
0, XE < X5 < X3, i

In the next section, the pressure wavefield is split into an
incident wavefield component and a scattered wavefield com-
ponent, to derive an integral equation in which only the
scattered pressure wavefield of the actual state and the re-
flected wavefield of the desired state occur.

ACTUAL MULTIPLE REMOVAL PROCEDURE

Our purpose is to derive an integral equation for the desired
pressure wavefield in which only the scattered pressure wave-
field of the actual state,

ﬁscl _ p~ _ p—inc,H, (13)
and the reflected wavefield quantities of the desired state,
p=p’-p, (14)

occur. The incident pressure wavefield p of the desired state
is given by
w
exp (/2 "~ x1)
4m(x®— x9

The equivalent expressions for p* and ™ in the Radon
domain are given by

PxxS) = jop wq° (15)

PPy, pa. x51x5)

s €Xp (Jopy Xy + jop, x5 — joT |xf - x3)
2jol"

=_jwp wg (16)
and

P xRpy, p2. x3)

o cexp (—Jjopi Xf — jop,xf — joT |xF = x)
=Jopwd zjmrw .

(17)
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The incident wavefield 5" of the actual state is given by
PR x5, x5)

= p"xRx, x5, x5) — PPN, x5 —x$).  (18)

The equivalent expressions for p* and p™H foliow directly
from equations (15)-(18). After substitution of equations (13)
and (14) into integral equation (9), we arrive at

7%(0) pxAx")
= qS(m)[p/nc.H(xR|x5) — piﬁt(xquS) + psc[(xquS)]

w 2 .
- (E) f p™x"p1. p2. 0)
(p1,p2)ER?

X v3(p1, p2. 0x5) dA

)]
“\2w

(
X T’g(pl, P2, OIXS) dA. (19)

Next, we evaluate the first integral on the right-hand side of
equation (19) for the case (0 < xff < x5). Substituting the
expression for the particle velocity [see equation (12)] and
using equation (13), we arrive at two constituents. The inte-
grands of the two constituents contain the multiplications of
P with p"" and p™ with p=*, respectively. Substituting the
expressions for the incident fields in the first constituent, this
integral becomes

p1.p2)ER?

)]

= inc,H S
me X (p1, P2, x51x5) dA
= g1 (20)

Equation (20) can be recognized as a contribution representing
the primary water surface reflection. Subtraction of this inte-
gral leads to the removal of this wavefield constituent. After
substitution of the incident field in the second constituent, we
arrive at

o\ 2
()]
(
ASCl
ngR)p (—) dA

X ——
Jpw sin (oI
= g5 p( xR x5). (21)

This expression is a representation for the downgoing pressure
wavefield measured at x” due to a point source positioned at
x° (see Fokkema and Van den Berg, 1993, Chap. 11). There-
fore, after subtraction of the downgoing pressure wavefield
from the total scattered pressure wavefield, the upgoing pres-
sure wavefield remains. This upgoing pressure wavefield is
given by

p'x"py. p,, 0)

Pr.p2)ER?

P™xRp1; pa, 0)

p™xAp1. pa. 0)
P, p2)ER?

w

PPxy, Xy, X3]x5) = Py, X, X3 |x5) — PPV xy, Xy, Xx3]x5)

= FR {exp u”rwxs)

“\Zsin T ) FR{ﬁS“(Xl,XZ,Xsle)}}- (22)

It is easily verified that equations (20)-(22) also hold for the
case (0 < x§ < x5,

The second integral in the right-hand side of equation (19)
is evaluated, again for the case (0 < xf < +9). After substi-
tuting the expression for the particle velocity (see equation
(12)) and using equation (13), we arrive at two constituents.
The integrands of the two constituents contain the multiplica-
tions of p" with ™!’ and p" with p*, respectively. Substituting
the expression for the incident field in the first constituent, this
integral becomes

Iy

() ‘
o ( p'xRpy, p,, O)W

X P py, py. 51x5) dA = ¢SB'(xPpy. pa. —xD).  (23)

P1.p2)ER?

Note that equation (23) is the desired reflected pressure
wavefield due to a source located at the image point of x° with
respect to the reflecting surface at x; = 0. Again, the same
expression holds for the case (0 < x¥ < xf).

Substituting the results of equations (20)-(23) in equation
(19), we arrive at

PR, x5, x9) — pxRxg, x5, —x$) = p(xRxS)

(&)

I‘ w pscf(_)
- - — dA. 24
“Jowsn (o) @ (24)

p(xRp1, P, 0)

Pr.p2)ER?

After extrapolating to xf = 0 and substituting expression (22)
for the upgoing pressure wavefield in terms of the scattered
pressure wavefield, equation (24) becomes

At R R 1S S A7 yR VR 1S yS _ oS
PO, X35 0, x5, x3) = pxf, xf, 0lx7, X3, —x3)

= p(xf, xf, 0lx9) (25)

()|
\om
(
2T p*(py, P2, 0[x5)
X
Pw q

POxf xf 0lpy, pa. 0)
P1,p2)ER?

dA.

To align the vertical source positions of the desired reflected
pressure wavefield, we apply a Radon transform with respect to
the source positions to the left-hand side of equation (25), with
the result that

PO, x5 OLXE. X3, x3) = PIOxR xR 01X, x5, 1)
= F2 {2/ sin (T x5) FSp"(xf xE Olx5, x5, 00} (26)

By substituting this result in equation (25), applying a Radon
transform with respect to the source coordinates, dividing by 2/
sin (wl',%), and applying an inverse Radon transform, we
arrive at
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P, x5, 015, x5, 0) = pP8(xF, xR 0lx5, x5, 0)
- f POE X, Olxy, X0, ORx, |65 ) A, (27)
(X1,%2)ER?

in which g% denotes the deghosted scattered pressure wave-
field, given by

- R LR AlvS oS
PEE(xT, x5, 0], x3, 0)

1
= Ffl{m FAp(xf, xf, O1x5, x5, Xés)}}-

(28)

The kernel K is obtained from the inverse Fourier transform of
the Radon type, with respect to the receiver slownesses as

w

_ 2r
K(py1, palxi, x3) = % P™(py. pz. OIX. x5, 0).  (29)
w

Equation (27) is a linear integral equation of the second
kind. This can be written as an operator equation of the form

a+Ra=5, (30)

in which b denotes the deghosted scattered pressure wavefield,
& denotes the reflected pressure wavefield, and K denotes the
kernel. Note that the integral variables in integral equation
(27) are the horizontal coordinates of the various source
locations of the desired wavefield while the receiver position is
fixed. Hence, the solution is obtained in the common-receiver
domain. Note also that the kernel and the known term of the
integral equation are both expressed in terms of the deghosted
pressure wavefield. In view of equation (29), the kernel of the
integral equation is nonsingular. Therefore, any integration
rule can be used to replace the integration by a discrete
summation. This procedure leads to a system of linear alge-
braic equations for the discrete values of the desired reflected
pressure wavefield, which can be solved numerically. An
alternative way to solve the integral equation is based on a
Neumann series

a=b-Rb+R®Rb) — -+ (-RB+ -, (31)

provided that its convergence can be proved. This topic is
discussed in the next section.

THE NEUMANN SERIES

We start with transforming integral equation (27) back to
the time domain, leading to

PR xR olx, x5, 0, 1)

=xnmPWuﬁﬁimﬁx;an—f dA

(%1, x2)ER?

I3
x j PUXR xR 0lxy, x5, 0, t— 1)
T=11
(32)
X Kxy, Xo |63, 33, 7) ok,
in which x 7, (§ denotes the unit-step function for time interval
7;. Time interval 7 is determined by noting that the deg-

hosted field has traveled at least from plane x; = 0 to and from
the plane X; = x3,,,. When we assume that the seismic
experiment starts at ¢ = 0, then, in view of causality, we have

T] = {[E R, t> [1 = 2X3'mm/CW}. (33)

Since the kernel depends only on the deghosted pressure
wavefield, we conclude that the same holds for the kernel,
Therefore, the lower bound of the integration of the convolu-
tion is set at 7 = {;. The upper bound follows directly from the
causality of the reflected desired pressure wavefield. After
applying a Neumann series to equation (32), we arrive at

P X5 01X, 65,0, ) = 3 pixR xf, olxS x5, 0, 1),
n=0

(34)
in which the first term is given by

oA, X OLXP, X3, 0, ) = x 7, (0 pP8(xf. xF. 01xF. x5, 0. o),

(35)
and the rith term follows from the ‘(7 — 1)th as

P xE x5 0%, x5, 0, 0

t
= —f dAf Pr(xf X5, 0lx1, xz, 0, £~ 1)
(x1,x2)ER? T={1
X K(x1, Xa|x%0, x5, ) O, (36)
Next, we prove by induction that py, is zero for ¢ < (17 + 1)¢,.
Inspecting equation (35), we observe that this is true for the
first term /7= 0. Let us now assume that p/,_, is zero for ¢t < nt.
It follows that p)_; (xf, x£, 0x,, x,, 0, t — 1) vanishes for ¢ —
T < nty. Since the integration variable T > f;, we conclude that
Pho1(Xf, %8, 01x,, x5, 0, t — =) vanishes for 1< (7 + 1)t,. As a
consequence, we conclude from equation (36) that p/(x, xf,
0lx1. X, 0,  vanishes for £ < (71 + 1)t,. Therefore, we may
write

PxE xR 01x5, x5, 0, 1)

©

= 2 X 70 (DPHXE xR OX5, 45,0, 0, (37)

n=0
in which
TIH] = {te R, > tn+1 = (n+ l)fl = 2(/7+ 1))(3',",',7/(:",}.

(38)

For a finite time interval of observation, 0 < t < ty+1, the
summation is confined to 0 < 7=< N — 1, and the Neumann
series is convergent. Therefore, we replace the infinite sum-
mation by a finite one

N—-1
PO 5 00 43, 0.0 = 3 pr(xf xF. 0l x5, 0, 0,
n=0
(39)

for 0<t< et =2(N+1)X3‘mm/cw.

Computing the desired pressure wavefield in this manner
leads to a successive removal of the water surface multiples,
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such that each higher-order iteration removes a higher-order
multiple. The first-order term has already been identified as
the deghosted field. The second-order term eliminates all
contributions from the actual wavefield that have been re-
flected once against the water surface (removal of first-order
multiples). Similarly, the (7 + 1)th-order term removes the
nth-order water surface multiples.

The temporal convolution in equation (36) is equivalent to
an algebraic multiplication in the frequency domain. Trans-
forming equations (36) and (39) to the frequency domain we
arrive at

N-1
POE X7 01X x5, 0) = X pixR xR 0lx5 x5, 0),  (40)
n=0

and

PHXE, x5, 05, x5, 0) =

- f Proi(x5, x5, 0lx1, Xz, 0)R( Xy, X |X5, x3) dA.
(X1,X2)ER?

(41)

It is noted that we cannot conclude that equation (41) is

convergent for every frequency when N 3 =, since the

convergence of the Neumann series has been proven only in

the time domain. Hence, the results of the Neumann series are
only useful in the time domain within a finite time interval.

INTEGRAL EQUATION IN THE DOUBLE RADON DOMAIN

In the previous sections, an integral equation was derived for
the desired reflected wavefield. The integral variables in the
integral equation are the horizontal coordinates of the various
source locations of the desired wavefield while the receiver
position is fixed. Hence, the solution is obtained in the
common-receiver domain. An alternative domain in which to
solve the integral equation is the double Radon domain, where
both source and receiver coordinates are transformed to the
slowness domain. We start with the integral equation [see
equation (27)]

P x5, 017, x5, 0) = p8(xf, xf. 0[xf, x5, 0)

- f PIXE, XE, 0lx1, xa, 0)R(xy. x2|x5, X5) dA.
{(x1.x2)ER?
(42)

Substituting for kernel K, defined in equation (29), its double
Radon transformed equivalence K, we get

A R R S S PY R R s S
,Dr(Xl , Xo, O’)(l‘ X3, 0) = pdeg()(l . X, 0|X1, X3, 0)

® 2
(o) [ ewapijopinh
(0. p)ER?

w 2
X (E) f Pxf, x5, 0lpy, pa. 0)
(pr.p2)ER?

xK (p1., palps, p3) dA. (43)

Next, we apply the forward Radon transform with respect to
both source and receiver coordinates to equation (43). We
then arrive at

p'(pf, 7. 0lp3. p3. 0) = B(pl, pf 0lpf, p3. 0)

® 2
)]
(

X K (p1. palps, p3) dA, (44)
with

B(pf. ps. Olpy. pa. 0)
P1.p2)ER?

- r, .
Kp1. palps. p3) = ﬁspww P (py, p2. Olp7, p3. 0),  (45)

in which 5% is the deghosted acoustic pressure field in the
double Radon domain.

Equation (44) is an integral equation of the second kind. We
note that the integral variables are the horizontal receiver
slowness positions of the kernel and the horizontal shot
slowness positions of the desired reflected wavefield. This
means that after solving the integral equation, the desired
reflected wavefield has been calculated for a fixed receiver
slowness value for all relevant source slowness values. To
obtain the result in the space-time domain, the integral equa-
tion must be solved for a// receiver slownesses.

It is easily verified that for a horizontally layered earth
model the kernel becomes a diagonal matrix. In general, for a
laterally varying earth, the data in the kernel is mapped around
the diagonal of the matrix. This fact can be used to speed the
calculation significantly, since fast numerical routines can be
used to solve the integral equation.

Again, the kernel of the integral equation is nonsingular.
Therefore, the integral equation can be discretized and solved,
either by matrix inversion or by a Neumann series. After the
removal of surface-related wave phenomena, the data are still
in the double Radon domain. To obtain the result in the
space-domain, an inverse double Radon transform must be
applied to the data. It is noted that some processing techniques
operate in the double Radon domain and inversion to the
spatial domain is superfluous.

NUMERICAL TESTS AND RESULTS

To test the multiple removal scheme, a 2-D synthetic data
set from a rigid strip embedded in a semi-infinite water layer
has been computed. The computer implementation of the
forward problem is based on a conjugate-gradient iterative
solution of an integral equation over the strip domain (Van
den Berg, 1984). The rigid strip is 140 m wide at a depth of
100 m. The source depth x5 is 7.5 m and the receiver depth x§°
is 5 m. We processed 501 shots with 181 traces per shot in a
split-spread configuration, with 512 time samples per trace.
Shot and receiver spacing were 3.5 m. Figure 5a shows the
center common-shot gather after removal of the direct wave
and its water surface reflection. The primary reflection, the
source/receiver ghosts, the water surface multiples, and the
diffracted energy caused by the edges from the strip are clearly
distinguishable. It is noted that in this configuration, no
internal multiples occur. The ideal output for the center
position is shown in Figure 5b. In Figure 5c, the deghosted
center shot record is shown. To illustrate the data distribution
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in the kernel, the data are transformed back to the p* — p5 —
7-domain and stacked over all 7-values. The result is shown in
Figure 5d. It is noted that the seismic energy is centered
around the diagonal, which enables the use of fast numerical
routines to perform the matrix inversion and the Neumann
series. The Neumann series solution of the integral equation is
shown in Figures 5e and 5f. Figure 5e shows the result after
removal of the first-order multiples; Figure 5f illustrates the
result after removal of the second-order multiples. Note the
excellent agreement with the ideal situation, where the dif-
fracted energy from the edges of the strip is perfectly pre-
served. For this data set, the Neumann series solution is
computationally faster when the data contain less than three
surface-related multiples. The use of the matrix-inversion
method becomes more favorable when the data are contami-
nated with more than two multiples.

Figure 6a shows the input shot gather for the position above
the left-hand edge of the strip. The matrix inversion solution of
the integral equation is shown in Figure 6b.

CONCLUSIONS

Using Rayleigh’s reciprocity theorem, a scheme is derived to
remove surface-related wave phenomena. No information
about the subsurface geology, neither material nor structural,
is required to remove the effects of the free surface. Applica-
tion of Rayleigh's reciprocity relation leads to an integral
equation of the second kind. Two domains are considered to
solve the integral equation: the space domain and the double
Radon domain. The advantage of solving the integral equation
in the double Radon domain is that it reduces the computation

FIG. 6. (a) Input shot gather for the position above the left-hand edge of the strip. (b) Output after multiple removal using matrix
inversion for the position above the left-hand edge of the strip.

time significantly since the data in the kernel are mapped
around the diagonal. Therefore, fast numerical procedures can
be applied to solve the integral equation. We considered two
solution methods for the integral equation: matrix inversion
and a Neumann series. Matrix inversion removes all multiples
at once; whereas, the Neumann series leads to a successive
removal of the water surface multiples such that each higher-
order term removes a higher order multiple. The method was
tested on an independently calculated data set, a laterally
varying rigid strip model. Excellent results were obtained for
this data set. Future research will concentrate on estimating
the wavelet from the data and on handling 2-D data in a 3-D
world.
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